scholarly journals T-Shaped Compact Dielectric Resonator Antenna for UWB Application

2019 ◽  
Vol 8 (3) ◽  
pp. 57-63
Author(s):  
A. Zitouni ◽  
N. Boukli-Hacene

In this article, a novel T-shaped compact dielectric resonator antenna for ultra-wideband (UWB) application is presented and studied. The proposed DRA structure consists of T-shaped dielectric resonator fed by stepped microstrip monopole printed antenna, partial ground plane and an inverted L-shaped stub. The inverted L-shaped stub and parasitic strip are utilized to improve impedance bandwidth. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. From the simulation results, it is found that the proposed antenna structure operates over a frequency range of 3.45 to more than 28 GHz with a fractional bandwidth over 156.12%, which covers UWB application, and having better gain and radiation characteristics.

2021 ◽  
Vol 25 (1) ◽  
pp. 11-19
Author(s):  
Mohamed Debab ◽  
◽  
Amina Bendaoudi ◽  
Zoubir Mahdjoub ◽  
◽  
...  

In this article, a dual-band notched ultra-wideband (UWB) dielectric resonator antenna is proposed. The antenna structure consists of Crescent Moon Dielectric Resonator (CMDR) fed by a stepped microstrip monopole printed antenna, partial ground plane, and an I-shaped stub. The Crescent Moon dielectric resonator is placed on the microstrip monopole printed antenna to achieve wide impedance bandwidth, and the I-shaped stub is utilized to improve impedance bandwidth for the WiMAX band. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. The entire band is useful with two filtered bands at 5.5 GHz and 6.8 GHz by the creation of notches. The band’s rejection, WLAN band (5.2–5.7 GHz), and the downlink frequency band of ITU 7 GHz-band for satellite communication (6.5–7.3 GHz) is realized by inserting G-shaped and C-shaped slots in the ground. The simulation results demonstrate that the proposed CMDR antenna achieves satisfactory UWB performance, with an impedance bandwidth of around 88.7%, covers the frequency band of 3.2 - 8.3 GHz, excluding a rejection band for the WLAN and ITU 7 GHz band. The CMDR is simulated using HFSS and CST high-frequency simulators.


2015 ◽  
Vol 8 (2) ◽  
pp. 335-340
Author(s):  
Seyyed Hadi Seyyedhatami ◽  
Ramazan Ali Sadeghzadeh

A new simple compact ultra-wideband (UWB) dielectric resonator antenna is presented. The antenna consists of a modified stepped microstrip-fed monopole printed antenna loaded with a rectangular dielectric resonator, truncated ground plane, and a parasitic strip underneath the dielectric resonator (DR). Using an optimized truncated ground plane and a combination of stepped feed line with DR an ultra-wide impedance bandwidth of 153% for (∣S11∣ ≤ −10 dB), covering the frequency range of (3.7–28 GHz) is achieved. The added parasitic strip can improve the radiation pattern, especially at high frequencies. The proposed antenna covers almost the entire UWB (3.1–10.6 GHz), Ku (12.4–18 GHz), and K (18–26.6 GHz) frequency bands. Also this antenna has an omnidirectional and stable radiation pattern over the whole operating frequency range and a compact size of (15 × 20 × 5.8 mm3) that make it suitable for wideband wireless system applications. This structure is light weight and can be easily fabricated. A prototype is built and measured. The simulated and measured results are in good agreement.


2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


2020 ◽  
Vol 9 (2) ◽  
pp. 52-59
Author(s):  
H. A. Hammas ◽  
M. F. Hasan ◽  
A. S. A. Jalal

In this paper, a compact multiband printed antenna is proposed to cover four resonant bands in the range of 1-6 GHz. The antenna structure is inspired from that of the classical multi-cavity magnetron resonator. The antenna comprises a slot annular ring structure in the ground plane of an Isola FR4 substrate having Ԑr = 3.5 and thickness h=1.5 mm. The outer circle of the annular ring is loaded with radial arranged small circular slots. On the opposite side of the substrate, the antenna is fed with a 50-Ohm microstrip line. To investigate the effect of different antenna elements on the antenna performance, a parametric study is conducted. The antenna is simulated, fabricated, and measured. The simulated 10 dB return loss bandwidths for the four resonant bands are 35% (1.53–2.11GHz), 14% (2.9–3.34GHz), 12% (4.2–4.75GHz), and 9% (4.94–5.39GHz), respectively. Thus, the antenna is a proper candidate for many in use bands of wireless systems (1.65, 3.14, 4.44, 5.24 GHz), including LTE-FDD, GNSS, GSM-450, W-CDMA/HSPA/k, 802.11a, and IEEE 802.11ac WLAN. The results indicate that the designed antenna has quad-band resonant responses with substantial frequency ratios of f4/f3, f3/f2 and f2/f1. Besides, the antenna offers reasonable radiation characteristics with a gain of 2.5, 4.0, 6.2, and 4.2 dBi, throughout the four resonant bands.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


This research article gives a detailed insight of the design, simulation of a compact circular shaped microstrip patch antenna that is fed using a coplanar waveguide feed (CPW for practical wireless communication applications). The antenna is typically designed for Ultra wideband (1.46-6GHz), Bluetooth (2.4GHz), ZIGBEE (2.4GHz), WLAN (5.15- 5.35 GHz and 5.725- 5.825), Wi-Fi (2.4-2.485GHz) and HIPERLAN-2(5.15 - 5.35 GHz and 5.470 -5.725GHz) wireless applications with stop band characteristics for the H (partial C band). The proposed antenna has an overall packaged structure dimensions of 78 x75 x1.605 mm3 and is fabricated on FR4 substrate as a circular patch antenna with a coplanar ground .The commercially available laminate FR4 substrate that is used has a dielectric constant of 4.4, height of 1.6mm and a loss tangent of 0.0024.The prospective antenna shows a simulated impedance bandwidth of 4.54 GHz. The coplanar waveguide feeding used with this antenna helps in improving antenna performance in terms of its impedance bandwidth as this geometry helps in creating multiple current loops at the antenna structure, thereby exciting nearby frequencies that merge to show a broadband of operation. The antenna’s operational bandwidth is also improved by the concept of modified ground, in which triangular and rectangular shapes are added symmetrically on both sides of ground plane that provide a better fringing effect and hence an improved bandwidth.


2021 ◽  
Vol 16 ◽  
pp. 194-197
Author(s):  
Guan-Pu Pan ◽  
Jiun-Da Lin ◽  
Tsung-lin Li ◽  
Jwo-Shiun Sun

In this paper, the new dielectric resonator antenna (DRA) is implemented by replacing the traditional dielectric resonator with a new material with low permittivity for ultra-wideband (UWB) application is presented and studied. A hybrid structure DRA was designed with parasitic slot to enhance the impedance bandwidth. The bandwidth met the specification of MB-OFDM for the bandwidth (3.168 GHz - 4.752 GHz). Finally, another antenna structure was designed. By applying the microstrip feed line, UWB and radiation characteristics are achieved. From the measured results, the proposed DRA showed good radiation pattern, high gain, wide bandwidth (3.03 GHz -10.7 GHz) and compact size. The bandwidth met the specification of MB-OFDM (3.168 GHz -10.56 GHz).


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Kumar Yadav ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract In this article, cross-shaped metallic parasitic strips based two radiator element multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) is excited by quadrature wave transformer microstrip feedline, designed, simulated and fabricated for ultra-wideband (UWB) applications. The proposed MIMO antenna structure is implemented with the help of two rectangular-shaped radiator elements that supports three modes HE11δ , HE21δ , and HE12δ at 4.4, 8.3, 10.8 GHz respectively. These fundamental and higher-order modes are supported to wide impedance bandwidth. Inverted T-shaped metallic strip and ground stub to improve the impedance bandwidth 104.6% (3.3–10.8 GHz) with 5.7 dBi peak gain, to enhance the coupling coefficient by stub, scissor-shaped defected ground structure and cross-shaped metallic parasitic strips are used in the existed structure. The MIMO diversity parameters are implemented as simulated ECC ≤ 0.003, DG ≥ 9.98 dB, and CCL ≤ 0.68. All the obtained MIMO antenna parameters are within the acceptable limit for providing high data rate for UWB applications.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Parikshit Vasisht ◽  
Robert Mark ◽  
Neela Chattoraj

Abstract A new wideband omni-directional compact rectangular ring dielectric resonator antenna (RRDRA) fused with slotted bevel shaped patch antenna is presented for the ultra-wideband (UWB) applications. The RRDR (rectangular ring dielectric resonator) is employed to generate lower order radiating modes with merge with the modes of patch to obtain high impedance bandwidth in UWB region. Further, RRDR use led to reduction in overall conductor loss to achieve high radiation efficiency. The proposed RRDRA structure achieved an impedance bandwidth covering the frequency range from 2.6–15.6 GHz, or ∼142%. The measured results show that the proposed DRA provides peak measured gain of 6.2 dBi and radiation efficiency of 90% at resonant frequency 6.3 GHz with stable omni-directional monopole like radiation patterns with low cross-polarization. The proposed antenna has a short ground plane of size 40 × 40 × 11.6 mm3 or ∼0.34λ 0 × 0.34λ 0 × 0.10λ 0 at 2.6 GHz.


Frequenz ◽  
2017 ◽  
Vol 72 (1-2) ◽  
pp. 1-6
Author(s):  
Dileep Sankaranarayanan ◽  
Duggirala Venkata Kiran ◽  
Biswajeet Mukherjee

AbstractIn this paper, a Coaxial probe-fed Laterally placed Cylindrical Dielectric Resonator Antenna (LCDRA) with symmetrical triangular notches is presented. The lateral surface of the Cylindrical Dielectric Resonator Antenna (CDRA) is kept on the ground plane with its longitudinal axis parallel to the ground plane. LCDRA has a lower resonant frequency than the CDRA and it offers considerably wider impedance bandwidth than CDRA. Finally, two symmetrical triangular notches are introduced on the two edges of LCDRA which is perpendicular to the axis to further improve the impedance bandwidth. The proposed antenna offers a wide impedance bandwidth (


Sign in / Sign up

Export Citation Format

Share Document