scholarly journals A redundancy-removing feature selection algorithm for nominal data

2015 ◽  
Vol 1 ◽  
pp. e24 ◽  
Author(s):  
Zhihua Li ◽  
Wenqu Gu

No order correlation or similarity metric exists in nominal data, and there will always be more redundancy in a nominal dataset, which means that an efficient mutual information-based nominal-data feature selection method is relatively difficult to find. In this paper, a nominal-data feature selection method based on mutual information without data transformation, called the redundancy-removing more relevance less redundancy algorithm, is proposed. By forming several new information-related definitions and the corresponding computational methods, the proposed method can compute the information-related amount of nominal data directly. Furthermore, by creating a new evaluation function that considers both the relevance and the redundancy globally, the new feature selection method can evaluate the importance of each nominal-data feature. Although the presented feature selection method takes commonly used MIFS-like forms, it is capable of handling high-dimensional datasets without expensive computations. We perform extensive experimental comparisons of the proposed algorithm and other methods using three benchmarking nominal datasets with two different classifiers. The experimental results demonstrate the average advantage of the presented algorithm over the well-known NMIFS algorithm in terms of the feature selection and classification accuracy, which indicates that the proposed method has a promising performance.

Author(s):  
Zhihua Li

No order correlation or similarity metric exists in nominal data, and there will always be more redundancy in a nominal dataset, which means that an efficient mutual information-based nominal-data feature selection method is relatively difficult to find. In this paper, a nominal-data feature selection method based on mutual information without data transformation, called the redundancy-removing more relevance less redundancy algorithm, is proposed. By forming several new information-related definitions and the corresponding computational methods, the proposed method can compute the information-related amount of nominal data directly. Furthermore, by creating a new evaluation function that considers both the relevance and the redundancy globally, the new feature selection method can evaluate the importance of each nominal-data feature. Although the presented feature selection method takes commonly used MIFS-like forms, it is capable of handling high-dimensional datasets without expensive computations. We perform extensive experimental comparisons of the proposed algorithm and other methods using three benchmarking nominal datasets with two different classifiers. The experimental results demonstrate the average advantage of the presented algorithm over the well-known NMIFS algorithm in terms of the feature selection and classification accuracy, which indicates that the proposed method has a promising performance.


2015 ◽  
Author(s):  
Zhihua Li

No order correlation or similarity metric exists in nominal data, and there will always be more redundancy in a nominal dataset, which means that an efficient mutual information-based nominal-data feature selection method is relatively difficult to find. In this paper, a nominal-data feature selection method based on mutual information without data transformation, called the redundancy-removing more relevance less redundancy algorithm, is proposed. By forming several new information-related definitions and the corresponding computational methods, the proposed method can compute the information-related amount of nominal data directly. Furthermore, by creating a new evaluation function that considers both the relevance and the redundancy globally, the new feature selection method can evaluate the importance of each nominal-data feature. Although the presented feature selection method takes commonly used MIFS-like forms, it is capable of handling high-dimensional datasets without expensive computations. We perform extensive experimental comparisons of the proposed algorithm and other methods using three benchmarking nominal datasets with two different classifiers. The experimental results demonstrate the average advantage of the presented algorithm over the well-known NMIFS algorithm in terms of the feature selection and classification accuracy, which indicates that the proposed method has a promising performance.


2014 ◽  
Vol 926-930 ◽  
pp. 3100-3104 ◽  
Author(s):  
Xi Wang ◽  
Qiang Li ◽  
Zhi Hong Xie

This article analyzed the defects of SVM-RFE feature selection algorithm, put forward new feature selection method combined SVM-RFE and PCA. Firstly, get the best feature subset through the method of cross validation of k based on SVM-RFE. Then, the PCA decreased the dimension of the feature subset and got the independent feature subset. The independent feature subset was the training and testing subset of SVM. Make experiments on five subsets of UCI, the results indicated that the training and testing time was shortened and the recognition accuracy rate of the SVM was higher.


2016 ◽  
Vol 13 (10) ◽  
pp. 6885-6891 ◽  
Author(s):  
Amarnath B ◽  
S. Appavu alias Balamurugan

A new feature selection method based on Inductive probability is proposed in this paper. The main idea is to find the dependent attributes and remove the redundant ones among them. The technology to obtain the dependency needed is based on Inductive probability approach. The purpose of the proposed method is to reduce the computational complexity and increase the classification accuracy of the selected feature subsets. The dependence between two attributes is determined based on the probabilities of their joint values that contribute to positive and negative classification decisions. If there is an opposing set of attribute values that do not lead to opposing classification decisions (zero probability), the two attributes are considered independent, otherwise dependent. One of them can be removed and thus the number of attributes is reduced. A new attribute selection algorithm with Inductive probability is implemented and evaluated through extensive experiments, comparing with related attribute selection algorithms over eight datasets such as Molecular Biology, Connect4, Soybean, Zoo, Ballon, Mushroom, Lenses and Fictional from UCI Machine Learning Repository databases.


2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


Sign in / Sign up

Export Citation Format

Share Document