scholarly journals Implementation of the computer tomography parallel algorithms with the incomplete set of data

2021 ◽  
Vol 7 ◽  
pp. e339
Author(s):  
Mariusz Pleszczyński

Computer tomography has a wide field of applicability; however, most of its applications assume that the data, obtained from the scans of the examined object, satisfy the expectations regarding their amount and quality. Unfortunately, sometimes such expected data cannot be achieved. Then we deal with the incomplete set of data. In the paper we consider an unusual case of such situation, which may occur when the access to the examined object is difficult. The previous research, conducted by the author, showed that the CT algorithms can be used successfully in this case as well, but the time of reconstruction is problematic. One of possibilities to reduce the time of reconstruction consists in executing the parallel calculations. In the analyzed approach the system of linear equations is divided into blocks, such that each block is operated by a different thread. Such investigations were performed only theoretically till now. In the current paper the usefulness of the parallel-block approach, proposed by the author, is examined. The conducted research has shown that also for an incomplete data set in the analyzed algorithm it is possible to select optimal values of the reconstruction parameters. We can also obtain (for a given number of pixels) a reconstruction with a given maximum error. The paper indicates the differences between the classical and the examined problem of CT. The obtained results confirm that the real implementation of the parallel algorithm is also convergent, which means it is useful.

2016 ◽  
Vol 47 (2) ◽  
pp. 179-192
Author(s):  
Tesfaye Kebede Enyew

In this paper, a Second degree generalized Jacobi Iteration method for solving system of linear equations, $Ax=b$ and discuss about the optimal values $a_{1}$ and $b_{1}$ in terms of spectral radius about for the convergence of SDGJ method of $x^{(n+1)}=b_{1}[D_{m}^{-1}(L_{m}+U_{m})x^{(n)}+k_{1m}]-a_{1}x^{(n-1)}.$ Few numerical examples are considered to show that the effective of the Second degree Generalized Jacobi Iteration method (SDGJ) in comparison with FDJ, FDGJ, SDJ.


Author(s):  
David Ek ◽  
Anders Forsgren

AbstractThe focus in this paper is interior-point methods for bound-constrained nonlinear optimization, where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. We propose partial and full approximate solutions to the Newton systems. The specific approximate solution depends on estimates of the active and inactive constraints at the solution. These sets are at each iteration estimated by basic heuristics. The partial approximate solutions are computationally inexpensive, whereas a system of linear equations needs to be solved for the full approximate solution. The size of the system is determined by the estimate of the inactive constraints at the solution. In addition, we motivate and suggest two Newton-like approaches which are based on an intermediate step that consists of the partial approximate solutions. The theoretical setting is introduced and asymptotic error bounds are given. We also give numerical results to investigate the performance of the approximate solutions within and beyond the theoretical framework.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
A. Khalid ◽  
M. N. Naeem ◽  
P. Agarwal ◽  
A. Ghaffar ◽  
Z. Ullah ◽  
...  

AbstractIn the current paper, authors proposed a computational model based on the cubic B-spline method to solve linear 6th order BVPs arising in astrophysics. The prescribed method transforms the boundary problem to a system of linear equations. The algorithm we are going to develop in this paper is not only simply the approximation solution of the 6th order BVPs using cubic B-spline, but it also describes the estimated derivatives of 1st order to 6th order of the analytic solution at the same time. This novel technique has lesser computational cost than numerous other techniques and is second order convergent. To show the efficiency of the proposed method, four numerical examples have been tested. The results are described using error tables and graphs and are compared with the results existing in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsen Alipour ◽  
Dumitru Baleanu ◽  
Fereshteh Babaei

We introduce a new combination of Bernstein polynomials (BPs) and Block-Pulse functions (BPFs) on the interval [0, 1]. These functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid Bernstein Block-Pulse Functions Method (HBBPFM). This method is very simple such that an integral equation is reduced to a system of linear equations. On the other hand, convergence analysis for this method is discussed. The method is computationally very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.


1997 ◽  
Vol 08 (03) ◽  
pp. 301-315 ◽  
Author(s):  
Marcel J. Nijman ◽  
Hilbert J. Kappen

A Radial Basis Boltzmann Machine (RBBM) is a specialized Boltzmann Machine architecture that combines feed-forward mapping with probability estimation in the input space, and for which very efficient learning rules exist. The hidden representation of the network displays symmetry breaking as a function of the noise in the dynamics. Thus, generalization can be studied as a function of the noise in the neuron dynamics instead of as a function of the number of hidden units. We show that the RBBM can be seen as an elegant alternative of k-nearest neighbor, leading to comparable performance without the need to store all data. We show that the RBBM has good classification performance compared to the MLP. The main advantage of the RBBM is that simultaneously with the input-output mapping, a model of the input space is obtained which can be used for learning with missing values. We derive learning rules for the case of incomplete data, and show that they perform better on incomplete data than the traditional learning rules on a 'repaired' data set.


Sign in / Sign up

Export Citation Format

Share Document