scholarly journals Efficient steganalysis using convolutional auto encoder network to ensure original image quality

2021 ◽  
Vol 7 ◽  
pp. e356
Author(s):  
Mallikarjuna Reddy Ayaluri ◽  
Sudheer Reddy K. ◽  
Srinivasa Reddy Konda ◽  
Sudharshan Reddy Chidirala

Steganalysis is the process of analyzing and predicting the presence of hidden information in images. Steganalysis would be most useful to predict whether the received images contain useful information. However, it is more difficult to predict the hidden information in images which is computationally difficult. In the existing research method, this is resolved by introducing the deep learning approach which attempts to perform steganalysis tasks in effectively. However, this research method does not concentrate the noises present in the images. It might increase the computational overhead where the error cost adjustment would require more iteration. This is resolved in the proposed research technique by introducing the novel research method called Non-Gaussian Noise Aware Auto Encoder Convolutional Neural Network (NGN-AEDNN). Classification technique provides a more flexible way for steganalysis where the multiple features present in the environment would lead to an inaccurate prediction rate. Here, learning accuracy is improved by introducing noise removal techniques before performing a learning task. Non-Gaussian Noise Removal technique is utilized to remove the noises before learning. Also, Gaussian noise removal is applied at every iteration of the neural network to adjust the error rate without the involvement of noisy features. This proposed work can ensure efficient steganalysis by accurate learning task. Matlab has been employed to implement the method by performing simulations from which it is proved that the proposed research technique NGN-AEDNN can ensure the efficient steganalysis outcome with the reduced computational overhead when compared with the existing methods.

Sensor Review ◽  
2021 ◽  
Vol 41 (5) ◽  
pp. 449-457
Author(s):  
Umair Ali ◽  
Wasif Muhammad ◽  
Muhammad Jehanzed Irshad ◽  
Sajjad Manzoor

Purpose Self-localization of an underwater robot using global positioning sensor and other radio positioning systems is not possible, as an alternative onboard sensor-based self-location estimation provides another possible solution. However, the dynamic and unstructured nature of the sea environment and highly noise effected sensory information makes the underwater robot self-localization a challenging research topic. The state-of-art multi-sensor fusion algorithms are deficient in dealing of multi-sensor data, e.g. Kalman filter cannot deal with non-Gaussian noise, while parametric filter such as Monte Carlo localization has high computational cost. An optimal fusion policy with low computational cost is an important research question for underwater robot localization. Design/methodology/approach In this paper, the authors proposed a novel predictive coding-biased competition/divisive input modulation (PC/BC-DIM) neural network-based multi-sensor fusion approach, which has the capability to fuse and approximate noisy sensory information in an optimal way. Findings Results of low mean localization error (i.e. 1.2704 m) and computation cost (i.e. 2.2 ms) show that the proposed method performs better than existing previous techniques in such dynamic and unstructured environments. Originality/value To the best of the authors’ knowledge, this work provides a novel multisensory fusion approach to overcome the existing problems of non-Gaussian noise removal, higher self-localization estimation accuracy and reduced computational cost.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2761
Author(s):  
Dong Chen ◽  
Young Hoon Joo

This paper proposes a novel three-dimensional direction-of-arrival (3D-DOA) estimation method for electromagnetic (EM) signals using convolutional neural networks (CNN) in a Gaussian or non-Gaussian noise environment. First of all, in the presence of Gaussian noise, four output covariance matrices of the uniform triangular array (UTA) are normalized and then fed into four neural networks for 1D-DOA estimation with identical parameters in parallel; then four 1D-DOA estimations of the UTA can be obtained, and finally, the 3D-DOA estimation could be obtained through post-processing. Secondly, in the presence of non-Gaussian noise, the array output covariance matrices are normalized by the infinity-norm and then processed in Gaussian noise environment; the infinity-norm normalization could effectively suppress impulsive outliers and then provide appropriate input features for the neural network. In addition, the outputs of the neural network are controlled by a signal monitoring network to avoid misjudgments. Comprehensive simulations demonstrate that in Gaussian or non-Gaussian noise environment, the proposed method is superior and effective in computation speed and accuracy in 1D-DOA and 3D-DOA estimations, and the signal monitoring network could also effectively control the neural network outputs. Consequently, we can conclude that CNN has better generalization ability in DOA estimation.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
M. Kumar ◽  
S. K. Mishra ◽  
S. S. Sahu

Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT) image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN) to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN) and the Cat Swarm Optimization (CSO) is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR), have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.


Sign in / Sign up

Export Citation Format

Share Document