scholarly journals Insect taxonomy can be difficult: a noctuid moth (Agaristinae: Aletopus imperialis) and a geometrid moth (Sterrhinae: Cartaletis dargei) combined into a cryptic species complex in eastern Africa (Lepidoptera)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11613
Author(s):  
Pasi Sihvonen ◽  
Leidys Murillo-Ramos ◽  
Niklas Wahlberg ◽  
Axel Hausmann ◽  
Alberto Zilli ◽  
...  

The systematic position of a large and strikingly coloured reddish-black moth, Cartaletis dargei Herbulot, 2003 (Geometridae: Sterrhinae) from Tanzania, has remained questionable since its description. Here we present molecular and morphological evidence showing that Cartaletis dargei only superficially resembles true Cartaletis Warren, 1894 (the relative name currently considered a junior synonym of Aletis Hübner, 1820), which are unpalatable diurnal moths superficially resembling butterflies, and that it is misplaced in the family Geometridae. We transfer it to Noctuidae: Agaristinae, and combine it with the genus Aletopus Jordan, 1926, from Tanzania, as Aletopus dargei (Herbulot, 2003) (new combination). We revise the genus Aletopus to contain three species, but find that it is a cryptic species complex that needs to be revised with more extensive taxon sampling. Our results demonstrate the difficulties in interpreting and classifying biological diversity. We discuss the problems in species delimitation and the potential drivers of evolution in eastern Africa that led to phenotypic similarity in unrelated lepidopteran lineages.

2012 ◽  
Vol 29 (6) ◽  
pp. 403 ◽  
Author(s):  
Natsumi Kanzaki ◽  
Erik J. Ragsdale ◽  
Matthias Herrmann ◽  
Werner E. Mayer ◽  
Ralf J. Sommer

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrea M. Quattrini ◽  
Tiana Wu ◽  
Keryea Soong ◽  
Ming-Shiou Jeng ◽  
Yehuda Benayahu ◽  
...  

2020 ◽  
Vol 103 (1) ◽  
pp. 1-46
Author(s):  
Yuan-Bing Wang ◽  
Yao Wang ◽  
Qi Fan ◽  
Dong-E Duan ◽  
Guo-Dong Zhang ◽  
...  

Abstract The phylogeny and systematics of cordycipitoid fungi have been extensively studied in the last two decades. However, systematic positions of some taxa in the family Cordycipitaceae have not yet been thoroughly resolved. In this study, a new phylogenetic framework of Cordycipitaceae is reconstructed using multigene (nrSSU, nrLSU, tef-1α, rpb1 and rpb2) sequence data with large-scale taxon sampling. In addition, ITS sequence data of species belonging to the Lecanicillium lineage in the family Cordycipitaceae are used to further determine their phylogenetic placements. Based on molecular phylogenetic data together with morphological evidence, two new genera (Flavocillium and Liangia), 16 new species and four new combinations are introduced. In the new genus Flavocillium, one new species F. bifurcatum and three new combinations previously described as Lecanicillium, namely F. acerosium, F. primulinium and F. subprimulinium, are proposed. The genus Liangia is built by the new species Lia. sinensis with Lecanicillium-like asexual morph, isolated from an entomopathogenic fungus Beauveria yunnanensis. Due to the absence of Paecilomyces hepiali, an economically and medically significant fungus, in the earlier phylogenetic analyses, its systematic position has been puzzling in both business and academic communities for a long time. Here, P. hepiali is recharacterized using the holotype material along with seven additional samples. It is assigned to the genus Samsoniella (Cordycipitaceae, Hypocreales) possessing Cordyceps-like sexual morph and Isaria-like asexual morph, and thus a new combination, namely S. hepiali is proposed. An additional nine new species in Samsoniella are described: S. alpina, S. antleroides, S. cardinalis, S. cristata, S. lanmaoa, S. kunmingensis, S. ramosa, S. tortricidae and S. yunnanensis. Four new species in Cordyceps are described: C. chaetoclavata, C. cocoonihabita, C. shuifuensis and C. subtenuipes. Simplicillium yunnanense, isolated from synnemata of Akanthomyces waltergamsii, is described as a new species.


Evolution ◽  
2019 ◽  
Vol 74 (1) ◽  
pp. 116-131 ◽  
Author(s):  
José Cerca ◽  
Christian Meyer ◽  
Dave Stateczny ◽  
Dominik Siemon ◽  
Jana Wegbrod ◽  
...  

2016 ◽  
Vol 177 (3) ◽  
pp. 481-506 ◽  
Author(s):  
Karen Kienberger ◽  
Leila Carmona ◽  
Marta Pola ◽  
Vinicius Padula ◽  
Terrence M. Gosliner ◽  
...  

2010 ◽  
Vol 100 (3) ◽  
pp. 359-366 ◽  
Author(s):  
J. Xu ◽  
P.J. De Barro ◽  
S.S. Liu

AbstractThe worldwide distribution and extensive genetic diversity of the whitefly Bemisia tabaci has long been recognized. However, whether B. tabaci is a complex species or a species complex has been a subject of debate. Recent phylogenetic analyses suggest that B. tabaci is a cryptic species complex composed of at least 24 morphologically indistinguishable species. Here, we conducted crossing experiments and demonstrated reproductive incompatibility among three of the 24 putative species. Our data and those of previously reported crossing experiments among various putative species of B. tabaci were collated to reveal the pattern of reproductive isolation. The combined results provide strong support to the proposition that B. tabaci is a cryptic species complex.


Sign in / Sign up

Export Citation Format

Share Document