scholarly journals Event-related potentials evoked by skin puncture reflect activation of Aβ fibers: comparison with intraepidermal and transcutaneous electrical stimulations

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12250
Author(s):  
Yui Shiroshita ◽  
Hikari Kirimoto ◽  
Tatsunori Watanabe ◽  
Keisuke Yunoki ◽  
Ikuko Sobue

Background Recently, event-related potentials (ERPs) evoked by skin puncture, commonly used for blood sampling, have received attention as a pain assessment tool in neonates. However, their latency appears to be far shorter than the latency of ERPs evoked by intraepidermal electrical stimulation (IES), which selectively activates nociceptive Aδ and C fibers. To clarify this important issue, we examined whether ERPs evoked by skin puncture appropriately reflect central nociceptive processing, as is the case with IES. Methods In Experiment 1, we recorded evoked potentials to the click sound produced by a lance device (click-only), lance stimulation with the click sound (click+lance), or lance stimulation with white noise (WN+lance) in eight healthy adults to investigate the effect of the click sound on the ERP evoked by skin puncture. In Experiment 2, we tested 18 heathy adults and recorded evoked potentials to shallow lance stimulation (SL) with a blade that did not reach the dermis (0.1 mm insertion depth); normal lance stimulation (CL) (1 mm depth); transcutaneous electrical stimulation (ES), which mainly activates Aβ fibers; and IES, which selectively activates Aδ fibers when low stimulation current intensities are applied. White noise was continuously presented during the experiments. The stimulations were applied to the hand dorsum. In the SL, the lance device did not touch the skin and the blade was inserted to a depth of 0.1 mm into the epidermis, where the free nerve endings of Aδ fibers are located, which minimized the tactile sensation caused by the device touching the skin and the activation of Aβ fibers by the blade reaching the dermis. In the CL, as in clinical use, the lance device touched the skin and the blade reached a depth of 1 mm from the skin surface, i.e., the depth of the dermis at which the Aβ fibers are located. Results The ERP N2 latencies for click-only (122 ± 2.9 ms) and click+lance (121 ± 6.5 ms) were significantly shorter than that for WN+lance (154 ± 7.1 ms). The ERP P2 latency for click-only (191 ± 11.3 ms) was significantly shorter than those for click+lance (249 ± 18.6 ms) and WN+lance (253 ± 11.2 ms). This suggests that the click sound shortens the N2 latency of the ERP evoked by skin puncture. The ERP N2 latencies for SL, CL, ES, and IES were 146 ± 8.3, 149 ± 9.9, 148 ± 13.1, and 197 ± 21.2 ms, respectively. The ERP P2 latencies were 250 ± 18.2, 251 ± 14.1, 237 ± 26.3, and 294 ± 30.0 ms, respectively. The ERP latency for SL was significantly shorter than that for IES and was similar to that for ES. This suggests that the penetration force generated by the blade of the lance device activates the Aβ fibers, consequently shortening the ERP latency. Conclusions Lance ERP may reflect the activation of Aβ fibers rather than Aδ fibers. A pain index that correctly and reliably reflects nociceptive processing must be developed to improve pain assessment and management in neonates.

Children ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Yui Shiroshita ◽  
Hikari Kirimoto ◽  
Mio Ozawa ◽  
Tatsunori Watanabe ◽  
Hiroko Uematsu ◽  
...  

To clarify the possibility of event-related potential (ERP) evoked by heel lance in neonates as an index of pain assessment, knowledge acquired by and problems of the methods used in studies on ERP evoked by heel lance in neonates were systematically reviewed, including knowledge about Aδ and C fibers responding to noxious stimuli and Aβ fibers responding to non-noxious stimuli. Of the 863 reports searched, 19 were selected for the final analysis. The following points were identified as problems for ERP evoked by heel lance in neonates to serve as a pain assessment index: (1) It is possible that the ERP evoked by heel lance reflected the activation of Aβ fibers responding to non-noxious stimuli and not the activation of Aδ or C fibers responding to noxious stimulation; (2) Sample size calculation was presented in few studies, and the number of stimulation trials to obtain an averaged ERP was small. Accordingly, to establish ERP evoked by heel lance as a pain assessment in neonates, it is necessary to perform a study to clarify ERP evoked by Aδ- and C-fiber stimulations accompanied by heel lance in neonates.


CoDAS ◽  
2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Mariana Keiko Kamita ◽  
Liliane Aparecida Fagundes Silva ◽  
Carla Gentile Matas

RESUMO Objetivo Identificar e analisar quais são os achados característicos dos Potenciais Evocados Auditivos Corticais (PEAC) em crianças e/ou adolescentes com Transtorno do Espectro do Autismo (TEA) em comparação do desenvolvimento típico, por meio de uma revisão sistemática da literatura. Estratégia de pesquisa Após formulação da pergunta de pesquisa, foi realizada uma revisão da literatura em sete bases de dados (Web of Science, Pubmed, Cochrane Library, Lilacs, Scielo, Science Direct, e Google acadêmico), com os seguintes descritores: transtorno do espectro autista (autism spectrum disorder), transtorno autístico (autistic disorder), potenciais evocados auditivos (evoked potentials, auditory), potencial evocado P300 (event related potentials, P300) e criança (child). A presente revisão foi cadastrada no Próspero, sob número 118751. Critérios de seleção Foram selecionados estudos publicados na integra, sem limitação de idioma, entre 2007 e 2019. Análise dos dados: Foram analisadas as características de latência e amplitude dos componentes P1, N1, P2, N2 e P3 presentes nos PEAC. Resultados Foram localizados 193 estudos; contudo 15 estudos contemplaram os critérios de inclusão. Embora não tenha sido possível identificar um padrão de resposta para os componentes P1, N1, P2, N2 e P3, os resultados da maioria dos estudos demonstraram que indivíduos com TEA podem apresentar diminuição de amplitude e aumento de latência do componente P3. Conclusão Indivíduos com TEA podem apresentar respostas diversas para os componentes dos PEAC, sendo que a diminuição de amplitude e aumento de latência do componente P3 foram as características mais comuns.


2019 ◽  
Vol 12 ◽  
Author(s):  
Carlos Trenado ◽  
Anaí González-Ramírez ◽  
Victoria Lizárraga-Cortés ◽  
Nicole Pedroarena Leal ◽  
Elias Manjarrez ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Nannan Yu ◽  
Ying Chen ◽  
Lingling Wu ◽  
Hanbing Lu

Estimating single-trial evoked potentials (EPs) corrupted by the spontaneous electroencephalogram (EEG) can be regarded as signal denoising problem. Sparse coding has significant success in signal denoising and EPs have been proven to have strong sparsity over an appropriate dictionary. In sparse coding, the noise generally is considered to be a Gaussian random process. However, some studies have shown that the background noise in EPs may present an impulsive characteristic which is far from Gaussian but suitable to be modeled by the α-stable distribution 1<α≤2. Consequently, the performances of general sparse coding will degrade or even fail. In view of this, we present a new sparse coding algorithm using p-norm optimization in single-trial EPs estimating. The algorithm can track the underlying EPs corrupted by α-stable distribution noise, trial-by-trial, without the need to estimate the α value. Simulations and experiments on human visual evoked potentials and event-related potentials are carried out to examine the performance of the proposed approach. Experimental results show that the proposed method is effective in estimating single-trial EPs under impulsive noise environment.


2021 ◽  
Vol 15 ◽  
Author(s):  
Maria Bader ◽  
Erich Schröger ◽  
Sabine Grimm

The auditory system is able to recognize auditory objects and is thought to form predictive models of them even though the acoustic information arriving at our ears is often imperfect, intermixed, or distorted. We investigated implicit regularity extraction for acoustically intact versus disrupted six-tone sound patterns via event-related potentials (ERPs). In an exact-repetition condition, identical patterns were repeated; in two distorted-repetition conditions, one randomly chosen segment in each sound pattern was replaced either by white noise or by a wrong pitch. In a roving-standard paradigm, sound patterns were repeated 1–12 times (standards) in a row before a new pattern (deviant) occurred. The participants were not informed about the roving rule and had to detect rarely occurring loudness changes. Behavioral detectability of pattern changes was assessed in a subsequent behavioral task. Pattern changes (standard vs. deviant) elicited mismatch negativity (MMN) and P3a, and were behaviorally detected above the chance level in all conditions, suggesting that the auditory system extracts regularities despite distortions in the acoustic input. However, MMN and P3a amplitude were decreased by distortions. At the level of MMN, both types of distortions caused similar impairments, suggesting that auditory regularity extraction is largely determined by the stimulus statistics of matching information. At the level of P3a, wrong-pitch distortions caused larger decreases than white-noise distortions. Wrong-pitch distortions likely prevented the engagement of restoration mechanisms and the segregation of disrupted from true pattern segments, causing stronger informational interference with the relevant pattern information.


Sign in / Sign up

Export Citation Format

Share Document