scholarly journals An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1247 ◽  
Author(s):  
Yusuke Kato
2015 ◽  
Author(s):  
Yusuke Kato

Biological containment is a genetic technique to program dangerous organisms to grow only in the laboratory and to die in the natural environment. Auxotropy for a substance not found in the natural environment is an ideal biological containment. Here, we constructed an Escherichia coli strain that cannot survive in the absence of the unnatural amino acid 3-iodo-L-tyrosine. This synthetic auxotrophy was achieved by conditional production of the antidote protein against the highly toxic enzyme colicin E3. An amber stop codon was inserted in the antidote gene. The translation of the antidote mRNA was controlled by a translational switch using amber-specific 3-iodo-L-tyrosine incorporation. The antidote is synthesized only when 3-iodo-L-tyrosine is present in the culture medium. The viability of this strain rapidly decreased with less than a 1 h half-life after removal of 3-iodo-L-tyrosine, suggesting that the decay of the antidote causes the host killing by activated colicin E3 in the absence of this unnatural amino acid. This containment system can be constructed by only plasmid introduction without genome editing, suggesting that this system may be applicable to other microbes carrying toxin-antidote systems similar to that of colicin E3.


2015 ◽  
Author(s):  
Yusuke Kato

Biological containment is a genetic technique to program dangerous organisms to grow only in the laboratory and to die in the natural environment. Auxotropy for a substance not found in the natural environment is an ideal biological containment. Here, we constructed an Escherichia coli strain that cannot survive in the absence of the unnatural amino acid 3-iodo-L-tyrosine. This synthetic auxotrophy was achieved by conditional production of the antidote protein against the highly toxic enzyme colicin E3. An amber stop codon was inserted in the antidote gene. The translation of the antidote mRNA was controlled by a translational switch using amber-specific 3-iodo-L-tyrosine incorporation. The antidote is synthesized only when 3-iodo-L-tyrosine is present in the culture medium. The viability of this strain rapidly decreased with less than a 1 h half-life after removal of 3-iodo-L-tyrosine, suggesting that the decay of the antidote causes the host killing by activated colicin E3 in the absence of this unnatural amino acid. This containment system can be constructed by only plasmid introduction without genome editing, suggesting that this system may be applicable to other microbes carrying toxin-antidote systems similar to that of colicin E3.


2001 ◽  
Vol 123 (7) ◽  
pp. 1545-1546
Author(s):  
James S. Nowick ◽  
De Michael Chung ◽  
Kalyani Maitra ◽  
Santanu Maitra ◽  
Kimberly D. Stigers ◽  
...  

2021 ◽  
Author(s):  
Chuan-Fa Liu ◽  
Yiyin Xia ◽  
Janet To ◽  
Ning-Yu Chan ◽  
Side Hu ◽  
...  

Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


ChemInform ◽  
2010 ◽  
Vol 26 (6) ◽  
pp. no-no
Author(s):  
J. MULZER ◽  
F. SCHROEDER ◽  
A. LOBBIA ◽  
J. BUSCHMANN ◽  
P. LUGER

1996 ◽  
Vol 5 (6) ◽  
pp. 1026-1031 ◽  
Author(s):  
Richard Wynn ◽  
Paul C. Harkins ◽  
Frederic M. Richards ◽  
Robert O. Fox

Science ◽  
1995 ◽  
Vol 268 (5209) ◽  
pp. 439-442 ◽  
Author(s):  
M. Nowak ◽  
P. Kearney ◽  
Sampson ◽  
M. Saks ◽  
C. Labarca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document