scholarly journals Arbuscular mycorrhizal fungi in soil, roots and rhizosphere ofMedicago truncatula: diversity and heterogeneity under semi-arid conditions

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6401 ◽  
Author(s):  
Neji Mahmoudi ◽  
Cristina Cruz ◽  
Mosbah Mahdhi ◽  
Mohamed Mars ◽  
Maria F. Caeiro

Mycorrhizal symbioses are considered indicators of ecosystem biodiversity. However, their diversity and relevance in arid and semi-arid ecosystems are poorly understood. This study addressed this subject, the main objective being to evaluate arbuscular mycorrhizal fungi (AMF) diversity and heterogeneity in a semi-arid region. Samples of bulk and rhizosphere soil and fine roots ofMedicago truncatulawere collected at four different sites with the same aridity index (6.1), in Bou-Hedma National Park, Tunisia, a semi-arid ecosystem. AMF taxa were assessed by 454- pyrosequencing and identified by BLAST matching of operational taxonomic units (OTUs) against the MaarjAMdatabase, targeting AMF SSUrRNAgene diversity. Roots were the hotspots of AMF diversity (107 OTUs out of a total of 138). Of the 138 OTUs, 113 found correspondence in the MaarjAMdatabase, with 32 AMF virtual taxa (VTX),19 Site-exclusive (SE) and 13 common to at least two sites (Non-site exclusive, NSE); the remaining 25 OTUs grouped in 16 putative new AMF taxa (pNTX), each one consisting of OTUs sharing pairwise distances not higher than 3%. We found a high diversity and heterogeneity of AMF across the four sites, which showed, in a regression analysis, significant relation to six out of the eight environmental parameters evaluated: grazing activity and soil texture, electrical conductivity, organic matter, total phosphorus and total nitrogen. AMF colonization of plants also presented significant differences among the four sites, as well as spore density, microbial biomass and several enzymatic activities (dehydrogenase, β-glucosidase and phosphatase) evaluated in rhizosphere soils. The four sites clustered in two groups in a hierarchical clustering evaluation based on their AMF diversity (total numbers of OTU, VTX and pNTX) and the parameters referred above. The crucial role of abiotic factors, other than aridity index, on AMF community composition, was evidenced by the high heterogeneity found between AMF communities across sites under identical aridity conditions.

2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Asri Subkhan Mahulette ◽  
Anggra Alfian ◽  
ABDUL KARIM KILKODA ◽  
IMELDA JEANETTE LAWALATA ◽  
DESSY ARIYANI MARASABESSY ◽  
...  

Abstract. Mahulette AS, Alfian A, Kilkoda KA, Lawalata IJ, Marasabessy DA, Tanasale VL, Makaruku MH. 2021. Isolation and identification of indigenous Arbuscular Mycorrhizal Fungi (AMF) of forest clove rhizosphere from Maluku, Indonesia. Biodiversitas 22: 3613-3619. Forest clove is classified as wild-type and endemic to the Maluku (Moluccas) Islands, Indonesia. The different condition of growing areas causes various types of Arbuscular Mycorrhizal Fungi (AMF) associated with forest clove. The study aimed to identify and obtain indigenous AMF inoculums from the forest clove rhizosphere from two distribution areas in Maluku. The results of AMF identification found two types of spores from the genus Glomus in the rhizosphere of forest cloves from Ambon Island with a spore density of 35/50 g of soil. In comparison, three spores were found in Seram Island, two from the genus Scutellospora and one from the Acaulospora. With an overall spore density of 5/50 g of soil. After culture trapping, there was a change in type and an increase in spore density in soil samples from the rhizosphere of the two forest clove distribution areas. Soil samples from Ambon after trapping culture obtained two new types of spores from the genus Acaulospora with a total spore number of 57/50 g soil while in soil samples from Seram found three new types of spores from the genus Glomus with a total spore count of 104/50 g of soil.


Mycorrhiza ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Bo Maxwell Stevens ◽  
Jeffrey Ryan Propster ◽  
Maarja Öpik ◽  
Gail W. T. Wilson ◽  
Sara Lynne Alloway ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document