scholarly journals Genome-wide identification and characterization of the Hsp70 gene family in allopolyploid rapeseed (Brassica napus L.) compared with its diploid progenitors

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7511 ◽  
Author(s):  
Ziwei Liang ◽  
Mengdi Li ◽  
Zhengyi Liu ◽  
Jianbo Wang

Heat shock protein 70 (Hsp70) plays an essential role in plant growth and development, as well as stress response. Rapeseed (Brassica napus L.) originated from recently interspecific hybridization between Brassica rapa and Brassica oleracea. In this study, a total of 47 Hsp70 genes were identified in B. napus (AnAnCnCn genome), including 22 genes from An subgenome and 25 genes from Cn subgenome. Meanwhile, 29 and 20 Hsp70 genes were explored in B. rapa (ArAr genome) and B. oleracea (CoCo genome), respectively. Based on phylogenetic analysis, 114 Hsp70 proteins derived from B. napus, B. rapa, B. oleracea and Arabidopsis thaliana, were divided into 6 subfamilies containing 16 Ar-An and 11 Co-Cn reliable orthologous pairs. The homology and synteny analysis indicated whole genome triplication and segmental duplication may be the major contributor for the expansion of Hsp70 gene family. Intron gain of BnHsp70 genes and domain loss of BnHsp70 proteins also were found in B. napus, associating with intron evolution and module evolution of proteins after allopolyploidization. In addition, transcriptional profiles analyses indicated that expression patterns of most BnHsp70 genes were tissue-specific. Moreover, Hsp70 orthologs exhibited different expression patterns in the same tissue and Cn subgenome biased expression was observed in leaf. These findings contribute to exploration of the evolutionary adaptation of polyploidy and will facilitate further application of BnHsp70 gene functions.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10934
Author(s):  
Ruihua Wang ◽  
Taili Han ◽  
Jifeng Sun ◽  
Ligong Xu ◽  
Jingjing Fan ◽  
...  

Ovate family proteins (OFPs) are a class of proteins with a conserved OVATE domain that contains approximately 70 amino acid residues. OFP proteins are plant-specific transcription factors that participate in regulating plant growth and development and are widely distributed in many plants. Little is known about OFPs in Brassica rapa to date. We identified 29 OFP genes in Brassica rapa and found that they were unevenly distributed on 10 chromosomes. Intron gain events may have occurred during the structural evolution of BraOFP paralogues. Syntenic analysis verified Brassica genome triplication, and whole genome duplication likely contributed to the expansion of the OFP gene family. All BraOFP genes had light responsive- and phytohormone-related cis-acting elements. Expression analysis from RNA-Seq data indicated that there were obvious changes in the expression levels of six OFP genes in the Brassica rapa hybrid, which may contribute to the formation of heterosis. Finally, we found that the paralogous genes had different expression patterns among the hybrid and its parents. These results provide the theoretical basis for the further analysis of the biological functions of OFP genes across the Brassica species.


2019 ◽  
Vol 20 (22) ◽  
pp. 5749 ◽  
Author(s):  
Zhao ◽  
Liu ◽  
Zhang ◽  
Hu ◽  
Liu ◽  
...  

Fructose-1,6-bisphosphate aldolase (FBA) is a versatile metabolic enzyme involved in multiple important processes of glycolysis, gluconeogenesis, and Calvin cycle. Despite its significance in plant biology, the identity of this gene family in oil crops is lacking. Here, we performed genome-wide identification and characterization of FBAs in an allotetraploid species, oilseed rape Brassica napus. Twenty-two BnaFBA genes were identified and divided into two groups based on integrative analyses of functional domains, phylogenetic relationships, and gene structures. Twelve and ten B. napus FBAs (BnaFBAs) were predicted to be localized in the chloroplast and cytoplasm, respectively. Notably, synteny analysis revealed that Brassica-specific triplication contributed to the expansion of the BnaFBA gene family during the evolution of B. napus. Various cis-acting regulatory elements pertinent to abiotic and biotic stresses, as well as phytohormone responses, were detected. Intriguingly, each of the BnaFBA genes exhibited distinct sequence polymorphisms. Among them, six contained signatures of selection, likely having experienced breeding selection during adaptation and domestication. Importantly, BnaFBAs showed diverse expression patterns at different developmental stages and were preferentially highly expressed in photosynthetic tissues. Our data thus provided the foundation for further elucidating the functional roles of individual BnaFBA and also potential targets for engineering to improve photosynthetic productivity in B. napus.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260268
Author(s):  
Qian Yang ◽  
Shan Wang ◽  
Hao Chen ◽  
Liang You ◽  
Fangying Liu ◽  
...  

The COBRA-like (COBL) genes play key roles in cell anisotropic expansion and the orientation of microfibrils. Mutations in these genes cause the brittle stem and induce pathogen responsive phenotypes in Arabidopsis and several crop plants. In this study, an in silico genome-wide analysis was performed to identify the COBL family members in Brassica. We identified 44, 20 and 23 COBL genes in B. napus and its diploid progenitor species B. rapa and B. oleracea, respectively. All the predicted COBL genes were phylogenetically clustered into two groups: the AtCOB group and the AtCOBL7 group. The conserved chromosome locations of COBLs in Arabidopsis and Brassica, together with clustering, indicated that the expansion of the COBL gene family in B. napus was primarily attributable to whole-genome triplication. Among the BnaCOBLs, 22 contained all the conserved motifs and derived from 9 of 12 subgroups. RNA-seq analysis was used to determine the tissue preferential expression patterns of various subgroups. BnaCOBL9, BnaCOBL35 and BnaCOBL41 were highly expressed in stem with high-breaking resistance, which implies these AtCOB subgroup members may be involved in stem development and stem breaking resistance of rapeseed. Our results of this study may help to elucidate the molecular properties of the COBRA gene family and provide informative clues for high stem-breaking resistance studies.


Sign in / Sign up

Export Citation Format

Share Document