scholarly journals Genome-Wide Identification and Characterization of FBA Gene Family in Polyploid Crop Brassica napus

2019 ◽  
Vol 20 (22) ◽  
pp. 5749 ◽  
Author(s):  
Zhao ◽  
Liu ◽  
Zhang ◽  
Hu ◽  
Liu ◽  
...  

Fructose-1,6-bisphosphate aldolase (FBA) is a versatile metabolic enzyme involved in multiple important processes of glycolysis, gluconeogenesis, and Calvin cycle. Despite its significance in plant biology, the identity of this gene family in oil crops is lacking. Here, we performed genome-wide identification and characterization of FBAs in an allotetraploid species, oilseed rape Brassica napus. Twenty-two BnaFBA genes were identified and divided into two groups based on integrative analyses of functional domains, phylogenetic relationships, and gene structures. Twelve and ten B. napus FBAs (BnaFBAs) were predicted to be localized in the chloroplast and cytoplasm, respectively. Notably, synteny analysis revealed that Brassica-specific triplication contributed to the expansion of the BnaFBA gene family during the evolution of B. napus. Various cis-acting regulatory elements pertinent to abiotic and biotic stresses, as well as phytohormone responses, were detected. Intriguingly, each of the BnaFBA genes exhibited distinct sequence polymorphisms. Among them, six contained signatures of selection, likely having experienced breeding selection during adaptation and domestication. Importantly, BnaFBAs showed diverse expression patterns at different developmental stages and were preferentially highly expressed in photosynthetic tissues. Our data thus provided the foundation for further elucidating the functional roles of individual BnaFBA and also potential targets for engineering to improve photosynthetic productivity in B. napus.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng Chen ◽  
Qin Zhou ◽  
Lan Wu ◽  
Fei Li ◽  
Baojun Liu ◽  
...  

Abstract Background The ALOG (Arabidopsis LSH1 and Oryza G1) family of proteins, namely DUF640 (domain of unknown function 640) domain proteins, were found in land plants. Functional characterization of a few ALOG members in model plants such as Arabidopsis and rice suggested they play important regulatory roles in plant development. The information about its evolution, however, is largely limited, and there was no any report on the ALOG genes in Petunia, an important ornamental species. Results The ALOG genes were identified in four species of Petunia including P. axillaris, P. inflata, P. integrifolia, and P. exserta based on the genome and/or transcriptome databases, which were further confirmed by cloning from P. hybrida ‘W115’ (Mitchel diploid), a popular laboratorial petunia line susceptible to genetic transformation. Phylogenetic analysis indicated that Petunia ALOG genes (named as LSHs according to their closest Arabidopsis homologs) were grouped into four clades, which can be further divided into eight groups, and similar exon-intron structure and motifs are reflected in the same group. The PhLSH genes of hybrid petunia ‘W115’ were mainly derived from P. axillaris. The qPCR analysis revealed distinct spatial expression patterns among them suggesting potentially functional diversification. Moreover, over-expressing PhLSH7a and PhLSH7b in Arabidopsis uncovered their functions in the development of both vegetative and reproductive organs. Conclusions Petunia genome includes 11 ALOG genes that can be divided into eight distinct groups, and they also show different expression patterns. Among these genes, PhLSH7b and PhLSH7a play significant roles in plant growth and development, especially in fruit development. Our results provide new insight into the evolution of ALOG gene family and have laid a good foundation for the study of petunia LSH gene in the future.


2021 ◽  
Vol 22 (9) ◽  
pp. 4625
Author(s):  
Ismail Din ◽  
Ihteram Ullah ◽  
Wei Wang ◽  
Hao Zhang ◽  
Lei Shi

Low phosphorus (P) availability is one of the major constraints to plant growth, particularly in acidic soils. A possible mechanism for enhancing the use of sparsely soluble P forms is the secretion of malate in plants by the aluminum-activated malate transporter (ALMT) gene family. Despite its significance in plant biology, the identification of the ALMT gene family in oilseed rape (Brassica napus; B. napus), an allotetraploid crop, is unveiled. Herein, we performed genome-wide identification and characterization of ALMTs in B. napus, determined their gene expression in different tissues and monitored transcriptional regulation of BnaALMTs in the roots and leaves at both a sufficient and a deficient P supply. Thirty-nine BnaALMT genes were identified and were clustered into five branches in the phylogenetic tree based on protein sequences. Collinearity analysis revealed that most of the BnaALMT genes shared syntenic relationships among BnaALMT members in B. napus, which suggested that whole-genome duplication (polyploidy) played a major driving force for BnaALMTs evolution in addition to segmental duplication. RNA-seq analyses showed that most BnaALMT genes were preferentially expressed in root and leaf tissues. Among them, the expression of BnaC08g13520D, BnaC08g15170D, BnaC08g15180D, BnaC08g13490D, BnaC08g13500D, BnaA08g26960D, BnaC05g14120D, BnaA06g12560D, BnaC05g20630D, BnaA07g02630D, BnaA04g15700D were significantly up-regulated in B. napus roots and leaf at a P deficient supply. The current study analyzes the evolution and the expression of the ALMT family in B. napus, which will help in further research on their role in the enhancement of soil P availability by secretion of organic acids.


2020 ◽  
Author(s):  
Weizhuo Zhu ◽  
Dezhi Wu ◽  
Lixi Jiang ◽  
Lingzhen Ye

Abstract Background: Sucrose non-fermenting 1 related protein kinases (SnRK) play crucial roles in responding to biotic and abiotic stresses through activating protein phosphorylation pathways. However, little information of SnRK genes was available in Brassica napus, one of important oil crops. Recently, the released sequences of the reference genome of B.napus provide a good chance to perform genome-wide identification and characterization of BnSnRK gene family in the rapeseed.Results: Totally 114 SnRK genes distributed on 19 chromosomes were identified in the genome of B.napus and classified into three subfamilies on the basis of phylogenetic analysis and the domain types. According to gene structure and motif composition analysis, the BnSnRK sequences showed obvious divergence among three subfamilies. Gene duplication and synteny between the genomes of the rapeseed and Arabidopsis were also analyzed to provide insights into the evolutionary characteristics of BnSnRK family genes. Cis-element analysis revealed that BnSnRKs may response to diverse environmental stresses. Moreover, the expression patterns of BnSnRKs in various tissues and under diverse abiotic stresses were distinct difference. Besides, Single Nucleotide Polymorphisms (SNP) distribution analysis suggests the function disparity of BnSnRK family genes in different genotypes of the rapeseed.Conclusion: We examined genomic structures, evolution features, expression patterns and SNP distribution of 114 BnSnRKs. The results provide valuable information for functional characterization of BnSnRK genes in future studies.


2021 ◽  
Author(s):  
Antt Htet Wai ◽  
Lae-Hyeon Cho ◽  
Muhammad Waseem ◽  
Do-jin Lee ◽  
Je-Min Lee ◽  
...  

Abstract Background Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously.Results In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure–function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba–GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signaling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. Furthermore, all but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway.Conclusions Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.


2021 ◽  
Author(s):  
Antt Htet Wai ◽  
Lae-Hyeon Cho ◽  
Muhammad Waseem ◽  
Do-jin Lee ◽  
Je-Min Lee ◽  
...  

Abstract Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. Here, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure–function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba–GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signaling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. Furthermore, all but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.


Sign in / Sign up

Export Citation Format

Share Document