scholarly journals Farmland Use Mapping Using High Resolution Images and Land Use Change Analysis

2012 ◽  
Vol 45 (6) ◽  
pp. 1164-1172 ◽  
Author(s):  
Kyungdo Lee ◽  
Sukyoung Hong ◽  
Yihyun Kim
GCB Bioenergy ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Mark Richards ◽  
Mark Pogson ◽  
Marta Dondini ◽  
Edward O. Jones ◽  
Astley Hastings ◽  
...  

2009 ◽  
Vol 30 (6) ◽  
pp. 845-849
Author(s):  
E.O. Santos ◽  
C. Silva ◽  
M.A. Santos ◽  
B. Matvienko ◽  
C.H.E.D.A. Rocha ◽  
...  

2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Diana Rechid ◽  
Vanessa Reinhart ◽  
Christina Asmus ◽  
Edouard L. Davin ◽  
...  

<p>Land-use and land cover (LULC) are continuously changing due to environmental changes and anthropogenic activities. Many observational and modeling studies show that LULC changes are important drivers altering land surface feedbacks and land-atmosphere exchange processes that have substantial impact on climate on the regional and local scale. Yet, most long-term regional climate modeling studies do not account for these changes. Therefore, within the WCRP CORDEX Flagship Pilot Study LUCAS (Land Use Change Across Scales) a new workflow was developed to generate high-resolution annual land cover change time series based on past reconstructions and future projections. First, the high-resolution global land cover dataset ESA-CCI LC (~300 m resolution) is aggregated and converted to a 0.1° resolution, fractional plant functional type (PFT) dataset. Second, the land use change information from the land-use harmonized dataset (LUH2), provided at 0.25° resolution as input for CMIP6 experiments, is translated into PFT changes employing a newly developed land use translator (LUT). The new LUT was first applied to the EURO-CORDEX domain. The resulting LULC maps for past and future - the LUCAS LUC dataset - can be applied as land use forcing to the next generation RCM simulations for downscaling CMIP6 by the EURO-CORDEX community and in the framework of FPS LUCAS. The dataset includes land cover and land management practices changes important for the regional and local scale such as urbanization and irrigation. The LUCAS LUC workflow is applied to further CORDEX domains, such as Australasia and North America. The resulting past and future land cover changes will be presented, and challenges regarding the application of the new workflow to different regions will be addressed. In addition, issues related to the implementation of the dataset into different RCMs will be discussed.</p>


2021 ◽  
Author(s):  
Wahaj Habib ◽  
John Connolly ◽  
Kevin McGuiness

<p>Peatlands are one of the most space-efficient terrestrial carbon stores. They cover approximately 3 % of the terrestrial land surface and account for about one-third of the total soil organic carbon stock. Peatlands have been under severe strain for centuries all over the world due to management related activities. In Ireland, peatlands span over approximately 14600 km<sup>2</sup>, and 85 % of that has already been degraded to some extent. To achieve temperature goals agreed in the Paris agreement and fulfil the EU’s commitment to quantifying the Carbon/Green House Gases (C/GHG) emissions from land use, land use change forestry, accurate mapping and identification of management related activities (land use) on peatlands is important.</p><p>High-resolution multispectral satellite imagery by European Space Agency (ESA) i.e., Sentinel-2 provides a good prospect for mapping peatland land use in Ireland. However, due to persistent cloud cover over Ireland, and the inability of optical sensors to penetrate the clouds makes the acquisition of clear sky imagery a challenge and hence hampers the analysis of the landscape. Google Earth Engine (a cloud-based planetary-scale satellite image platform) was used to create a cloud-free image mosaic from sentinel-2 data was created for raised bogs in Ireland (images collected for the time period between 2017-2020). A preliminary analysis was conducted to identify peatland land use classes, i.e., grassland/pasture, crop/tillage, built-up, cutover, cutaway and coniferous, broadleaf forests using this mosaicked image. The land-use classification results may be used as a baseline dataset since currently, no high-resolution peatland land use dataset exists for Ireland. It can also be used for quantification of land-use change on peatlands. Moreover, since Ireland will now be voluntarily accounting the GHG emissions from managed wetlands (including bogs), this data could also be useful for such type of assessment.</p>


2019 ◽  
Vol 12 ◽  
pp. 41-56
Author(s):  
Chhabi Lal Chidi ◽  
Wolfgang Sulzer ◽  
Pushkar Kumar Pradhan

 Depopulation and increasing greenery due to agriculture land abandonment is general scenario in many highlands of Nepal in recent decades. High resolution remote sensing image is used in land use change analysis. Recently, object based image analysis technique has helped to improve the land use classification accuracies using object based image analysis. Thus, this study was carried out with high resolution image data sources and innovative technique of land use classification in the northeast part of Andhikhola watershed, in the Middle Hill of Nepal. Increasing greenery due to agriculture land abandonment in the hill slope is the major land use change. Secondly, increasing built-up area in lowland along the highway is another. Decreasing hill farmers is the major drivers of converting cultivated land into vegetated area and increasing built-up area is due to urbanization and shift of rural people from hill slope to lowland and accessible area. Converting cultivated land into forest, shrubs and grassland is at marginal land and remote areas which is mostly controlled by altitude, slope gradient and slope aspect. Additionally, land suitability and accessibility are also other important controlling factors.


Sign in / Sign up

Export Citation Format

Share Document