scholarly journals Evaluation of Running Safety and Ride Comfort for High Speed Train in Cases of Superimposition of Vertical and Horizontal Curves

2013 ◽  
Vol 16 (4) ◽  
pp. 311-317
Author(s):  
Ju-Hwan Um ◽  
IL-Yoon Choi ◽  
Man-Cheol Kim
Author(s):  
Penghao Li ◽  
Zhonglong Li ◽  
Zhaoling Han ◽  
Shengyang Zhu ◽  
Wanming Zhai ◽  
...  

In Northeast China and the areas along Sichuan-Tibet railway, collision between floating ice and piers of railway bridges seriously threatens the train operation safety. The safety of high-speed train running on the bridge subject to the impact of floating ice collision is rarely assessed considering the spatial interaction of the train-track-bridge-ice system. To evaluate the running safety and ride comfort of trains and the structural stability of railway bridges under the collision between floating ices and piers, a train-track-bridge (TTB) dynamic interaction model considering the impact of floating ice is established. Using the refined finite element model, the collision process of floating ice on bridge pier is simulated, and the impact loads are employed as the excitation input of the TTB dynamics model. Taking a 5 × 32 m simply-supported bridges as a case study, the influence of bridge structural parameters on the floating ice collision system is investigated, and then the dynamic responses of the TTB system induced by the floating ice impact loads are analyzed in detail. Finally, the effect of the ice impact loads on the running safety of the high-speed train is revealed. Results show that under the floating ice impact loads, the angle of the pier sharp-nose (APSN) and lateral stiffness of foundations are the key parameters that influence the dynamic responses of the bridge, and an improperly small lateral stiffness of foundation would lead to an instability of bridge structure. The influence of ice impact loads on the dynamic responses of the train is remarkable. The lateral vibration acceleration, derailment factor and lateral wheel rail force caused by the ice impact loads are all greater than those caused by the track irregularity, while the wheel unloading rate is slightly smaller. In addition, the running speed of train is also closely related to the running safety and ride comfort when the collision occurs. When the train speed exceeds 400 km/h, the train passing through the bridge would have the possibility of derailment.


2008 ◽  
Vol 1 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Tsutomu WATANABE ◽  
Masamichi SOGABE ◽  
Takayuki YAMAZAKI

2010 ◽  
Vol 29-32 ◽  
pp. 835-840 ◽  
Author(s):  
Zhi Peng Feng ◽  
Ji Ye Zhang ◽  
Wei Hua Zhang

As the speed of train increases, flow-induced vibration of trains passing through tunnels has become a subject of discussion, to investigate this phenomenon, a simplified geometric model and a vehicle dynamics model of a high-speed train traveling through a tunnel were built. To analyze the unsteady three-dimensional flow around the train, the 3-D, transient, viscous, compressible Reynolds-averaged Navier-Stokes equations combined with the k- two-equation turbulence model were solved with the finite volume method. The motion of the train was carried out using the technique of sliding grid method. The dynamics response of the train was obtained by means of the computational multi-body dynamics calculation. Meanwhile the running safety and riding comfort of the train were analyzed. With the numerical simulation, the variation of aerodynamic forces was obtained. The research founds that, vibration of the train increases drastically during it passing through a tunnel. The running safety and riding quality of the train are reduced greatly but they are in the safe range.


2011 ◽  
Vol 77 (781) ◽  
pp. 3205-3210 ◽  
Author(s):  
Ryohei SHIMAMUNE ◽  
Chizuru NAKAGAWA ◽  
Hisato OHNO ◽  
Hiroaki SHIROTO

Author(s):  
Sono Bhardawaj ◽  
Rakesh Chandmal Sharma ◽  
Sunil Kumar Sharma

In this paper, the semi-active suspension in railway vehicles based on the controlled Magnetorheological (MR) fluid dampers is examined, and compared with the semi-active low and semi-active high suspension systems to enhance the running safety, ride quality and ride comfort for a high-speed rail vehicle. Fuzzy logic and chaotic fruit fly control techniques are used as system controllers to determine desired damping forces for front and rear bogie frame with force track-ability of system controllers. A 28 degrees of freedom (DoF) mathematical model of the rail vehicle is formulated using nonlinear vehicle suspension and nonlinear heuristic creep model. The Modified Dahl model is formulated to characterize the behavior of the MR damper. The simulation result is validated using the experimental results. Four different suspension strategies are proposed with MR damper i.e. passive, semi-active low, semi-active high and semi-active intelligent compound controller based on bio-inspired chaotic fruit and fuzzy logic hybrid controller. A comparison indicates that the semi-active controller gives the optimum performance based on frequency and time response analysis for comfort vibration actuation (9.088 to 15.33%), ride quality (14.81–20.73%) and comfort (24.91–27.81%) and it has little influence on derailment quotients, offload factors, as a result, it will not endanger the running safety of rail vehicle.


Sign in / Sign up

Export Citation Format

Share Document