scholarly journals Evaluation of Mechanical Properties and Analysis of Microstructure of AZ61 Magnesium Alloy Butt Joints by Friction Stir Welding

2016 ◽  
Vol 19 (4) ◽  
pp. 417-426
Author(s):  
Seung-Ju Sun ◽  
Jung-Seok Kim ◽  
Jae-Yong Lim ◽  
Woo-Geun Lee ◽  
Yo-Han Go ◽  
...  
2007 ◽  
Vol 561-565 ◽  
pp. 1059-1062 ◽  
Author(s):  
H. Takahara ◽  
Masato Tsujikawa ◽  
Sung Wook Chung ◽  
Y. Okawa ◽  
Kenji Higashi

The influence of tool control in non-linear friction stir welding (FSW) on mechanical properties of joints was investigated. FSW is widely applied to linear joints. It is impossible for five axis FSW machines, however, to keep all the FSW parameters in optimum conditions at non-linear welding. Non-linear FSW joints should be made by compromise with the order of priority for FSW parameters. The tensile test results of butt joints with rectangular change in welding direction on plate plane (L-shaped butt joints) with various welding parameter change. It was found that turn to the retreating side is encouraged when welding direction change. And the method of zero inclination tool angle is effective at non-linear and plane welding.


2011 ◽  
Vol 295-297 ◽  
pp. 1929-1932
Author(s):  
Yi Min Tu ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Xin Zhang ◽  
Ke Ke Zhang

In order to obtain better understanding of the friction stir weldability of the magnesium alloy and provide some foundational information for improving mechanical properties of retardant magnesium alloy joints. A retardant magnesium alloy was weld using the method of friction stir welding. The influence of welding parameters on the strength of the joint was investigated. The maximum strength of 230 MPa was obtained from the joint welded at the tool rotational speed of 1000 r/min and welding speed of 750 mm/min.


2020 ◽  
Vol 11 (6) ◽  
pp. 769-782 ◽  
Author(s):  
Nagabhushan Kumar Kadigithala ◽  
Vanitha C

PurposeThe main purpose of the present work is to evaluate, the microstructural and mechanical properties of friction stir welded plates of AZ91D magnesium alloy with 3 mm thickness, and to determine the optimum range of welding conditions.Design/methodology/approachMicrostructure and fractographic studies were carried out using scanning electron microscopy (SEM). Vickers micro hardness test was performed to evaluate the hardness profile in the region of the weld area. The phases in the material were confirmed by X-Ray diffraction (XRD) analysis. Transverse tensile tests were conducted using universal testing machine (UTM) to examine the joint strength of the weldments at different parameters.FindingsMetallographic studies revealed that each zone shown different lineaments depending on the mechanical and thermal conditions. Significant improvement in the hardness was observed between the base material and weldments. Transverse tensile test results of weldments had shown almost similar strength that of base material regardless of welding speed. Fractographic examination indicated that the welded specimens failed due to brittle mode fracture. Through these studies it was confirmed that friction stir welding (FSW) can be used for the welding of AZ91D magnesium alloy.Research limitations/implicationsIn the present study, the welding speed varied from 25 mm/min to 75 mm/min, tilt angle varied from 1.5° to 2.5° and constant rotational speed of 500 rpm.Practical implicationsMagnesium and aluminum based alloys which are having high strength and low density, used in automotive and aerospace applications can be successfully joined using FSW technique. The fusion welding defects can be eliminated by adopting this technique.Originality/valueLimited work had been carried out on the FSW of magnesium based alloys over aluminum based alloys. Furthermore, this paper analyses the influence of welding parameters over the microstructural and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document