Dynamic Response Analysis for Upper Structure of 5MW Offshore Wind Turbine System based on Multi-Body Dynamics Simulation

Author(s):  
Kangsu Lee ◽  
Jongsoon Im ◽  
Jangyong Lee ◽  
Chang Yong Song
Author(s):  
Tomoaki Utsunomiya ◽  
Iku Sato ◽  
Shigeo Yoshida ◽  
Hiroshi Ookubo ◽  
Shigesuke Ishida

In this paper, dynamic response analysis of a Floating Offshore Wind Turbine (FOWT) with Spar-type floating foundation is presented. The FOWT mounts a 100kW down-wind turbine, and is grid-connected. It was launched at sea on 9th June 2012, and moored on 11th for the purpose of the demonstration experiment. During the experiment, the FOWT was attacked by severe typhoon events twice. Among them, Sanba (international designation: 1216) was the strongest tropical cyclone worldwide in 2012. The central atmospheric pressure was 940 hPa when it was close to the FOWT, and the maximum significant wave height of 9.5m was recorded at the site. In this paper, the dynamic responses of the platform motion, the stresses at the tower sections and the chain tensions during the typhoon event, Sanba (1216), have been analyzed, and compared with the measured data. Through the comparison, validation of the numerical simulation tool (Adams with SparDyn developed by the authors) has been made.


Author(s):  
Fasuo Yan ◽  
Cheng Peng ◽  
Jun Zhang ◽  
Dagang Wang

Offshore turbines are gaining attention as means to capture the immense and relatively calm wind resources available over deep waters. A coupled dynamic analysis is required to evaluate the interactions between the wind turbine, floating hull and its mooring system. In this study, a coupled hydro-aero dynamic response analysis of a floating wind turbine system (NREL offshore-5MW baseline wind turbine) is carried out. A numerical code, known as COUPLE, has been extended to collaborate with FAST for the simulation of the dynamic interaction. Two methods were used in the analysis; one is coupled method and the other is limited coupled method. In the coupled method, the two codes are linked at each time step to solve the whole floating system. The limited coupled method assumes wind load is from a turbine installed on top of a fixed base, namely it doesn’t consider real-time configuration of floating carrier at each time step. Coupled technique is also mentioned to integrate the hydro-aero dynamic analysis in this paper. Six-degrees of freedom motion and mooring tensions are presented and compared. The numerical results derived in this study may provide crucial information for the design of a floating wind turbine in the future.


Sign in / Sign up

Export Citation Format

Share Document