Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine

2014 ◽  
Vol 52 (3) ◽  
pp. 633-646
Author(s):  
Jin-Rae Cho ◽  
Bo-Sung Kim ◽  
Eun-Ho Choi ◽  
Shi-Bok Lee ◽  
O-Kaung Lim
Author(s):  
Tomoaki Utsunomiya ◽  
Iku Sato ◽  
Shigeo Yoshida ◽  
Hiroshi Ookubo ◽  
Shigesuke Ishida

In this paper, dynamic response analysis of a Floating Offshore Wind Turbine (FOWT) with Spar-type floating foundation is presented. The FOWT mounts a 100kW down-wind turbine, and is grid-connected. It was launched at sea on 9th June 2012, and moored on 11th for the purpose of the demonstration experiment. During the experiment, the FOWT was attacked by severe typhoon events twice. Among them, Sanba (international designation: 1216) was the strongest tropical cyclone worldwide in 2012. The central atmospheric pressure was 940 hPa when it was close to the FOWT, and the maximum significant wave height of 9.5m was recorded at the site. In this paper, the dynamic responses of the platform motion, the stresses at the tower sections and the chain tensions during the typhoon event, Sanba (1216), have been analyzed, and compared with the measured data. Through the comparison, validation of the numerical simulation tool (Adams with SparDyn developed by the authors) has been made.


2018 ◽  
Vol 8 (8) ◽  
pp. 1229 ◽  
Author(s):  
Xiang Zheng ◽  
Yu Lei

A state-of-the-art concept integrating a deepwater floating offshore wind turbine with a steel fish-farming cage (FOWT-SFFC) is presented in this paper. The configurations of this floating structure are given in detail, showing that the multi-megawatt wind turbine sitting on the cage foundation possesses excellent hydrostatic stability. The motion response amplitude operators (RAOs) calculated by the potential-flow program WAMIT demonstrate that the hydrodynamic performance of FOWT-SFFC is much better than OC3Hywind spar and OC4DeepCwind semisubmersible wind turbines. The aero-hydro-servo-elastic modeling and time-domain simulations are carried out by FAST to investigate the dynamic response of FOWT-SFFC for several environmental conditions. The short-term extreme stochastic response reveals that the dynamic behavior of FOWT-SFFC outperforms its counterparts. From the seakeeping and structural dynamic views, it is a very competitive and promising candidate in offshore industry for both power exploitation and aquaculture in deep waters.


Author(s):  
Wenhua Wang ◽  
Zhen Gao ◽  
Xin Li ◽  
Torgeir Moan ◽  
Bin Wang

In the last decade the wind energy industry has developed rapidly in China, especially offshore. For a water depth less than 20m, monopile and multi-pile substructures (tripod, pentapod) are applied widely in offshore wind farms. Some wind farms in China are located in high seismicity regions, thus, the earthquake load may become the dominant load for offshore wind turbines. This paper deals with the seismic behavior of an offshore wind turbine (OWT) consisting of the NREL 5MW baseline wind turbine, a pentapod substructure and a pile foundation of a real offshore wind turbine in China. A test model of the OWT is designed based on the hydro-elastic similarity. Test cases of different load combinations are performed with the environmental conditions generated by the Joint Earthquake, Wave and Current Simulation System and the Simple Wind Field Generation System at Dalian University of Technology, China, in order to investigate the structural dynamic responses under different load conditions. In the tests, a circular disk is used to model the rotor-nacelle system, and a force gauge is fixed at the center of the disk to measure the wind forces during the tests. A series of accelerometers are arranged along the model tower and the pentapod piles, and strain gauges glued on the substructure members are intended to measure the structural dynamic responses. A finite element model of the complete wind turbine is also established in order to compare the theoretical results with the test data. The hydro-elastic similarity is validated based on the comparison of the measured dynamic characteristics and the results of the prototype modal analysis. The numerical results agree well with the experimental data. Based on the comparisons of the results, the effect of the wind and sea loads on the structural responses subjected to seismic is demonstrated, especially the influence on the global response of the structure. It is seen that the effect of the combined seismic, wind, wave and current load conditions can not be simply superimposed. Hence the interaction effect in the seismic analysis should be considered when the wind, wave and current loads have a non-negligible effect.


Sign in / Sign up

Export Citation Format

Share Document