OIL POLLUTION CONTROL LEGISLATION AND THE WATER QUALITY IMPROVEMENT ACT OF 1970, THE FEDERAL VIEWPOINT

1971 ◽  
Vol 1971 (1) ◽  
pp. 11-15
Author(s):  
K.E. Biglane ◽  
R.H. Wyer

ABSTRACT The Water Quality Improvement Act of 1970 was enacted and signed into law on April 3, 1970. This Act provides the mechanism for strong Federal actions relating to oil removal, prevention and enforcement. This paper discusses the most significant provisions of the Act and describes the Federal point of view relating to key provisions. Emphasis is placed on the rationale behind the designation of a harmful quantity of oil, the impact of the notification requirement, adequacy of oil removal procedures, prevention of spills, and enforcement provisions.

Author(s):  
Ruifen Liu ◽  
Zeshi Li ◽  
Xiaokang Xin ◽  
Defu Liu ◽  
Jialei Zhang ◽  
...  

Abstract Water shortage and water pollution are two prominent issues in North China. Understanding hydrological cycle and water-quality changes in response to pollution control measures is fundamental for a better water management there. Using coupled MIKE SHE/MIKE 11 modeling, various hydrological components in Yanghe Basin in semiarid area of North China were quantified for three typical hydrological years and concentrations of COD and TP in a national monitoring section of Yanghe were evaluated with/without pollution control measures. The modeling results show that the underground water storage of Yanghe Basin gets depleted due to evapotranspiration compensation and groundwater utilization regardless of hydrological condition, indicating an unsustainable in-situ water resource utilization. Water quality goals set for Yanghe (COD ≤ 20 mg/L and TP ≤ 0.2 mg/L) can hardly be achieved if pollution control measures are not taken, especially for a dry hydrological year. Depending on hydrological conditions, non-point source control technology-related projects in a 109-km2 village and a 7-km river-channel wetland in mainstream of Yanghe will have a positive effect or negligible effect on water quality improvement. To meet water quality goals, implementation of three wetlands is an effective and economic way.


10.29007/5q94 ◽  
2018 ◽  
Author(s):  
Alper Elçi ◽  
Selma Ayaz ◽  
Sebnem Aynur

Water quality modelling studies are effective tools for the prediction of the impact of water quality improvement measures. This study aims to predict the future water quality of a nutrient-sensitive river basin assuming the implementation of water quality improvement measures by setting up and executing multiple models. The rationale behind the use of multiple models is the better suitability of each model for its relevant objective. Hydrodynamics of the river are simulated using the WASP model. Following the estimation of diffuse-source nutrient loadings in the river basin with the SWAT model, water quality of the river is simulated with a multi-segment Aquatox model. All models are calibrated to one year of observed data. Models are first executed to obtain the current water quality status and then to predict the water quality for the period of 2016-2040. For the future persion, it is assumed that measures are taken to reduce point-source and diffuse-source pollutant loadings. Model results suggest that load reductions are expected to be effective and that improvement in water quality can be predicted for all water quality indicators. TKN concentrations vary between 0.11-2.13 mg/l with the highest mean concentration occurring during the months of January. TP concentrations are expected to have a higher variability (0.032-0.65 mg/l).


2001 ◽  
Author(s):  
Simon Toze ◽  
Peter Dillon ◽  
Paul Pavelic ◽  
Brenton Nicholson ◽  
Michel Gibert

Sign in / Sign up

Export Citation Format

Share Document