Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types

2019 ◽  
Vol 19 (3) ◽  
pp. 41-50
Author(s):  
Ho-Soo Kim ◽  
Dong-Kwan Kim ◽  
Tae-Ho Won ◽  
Geon-Woo Jeon
2021 ◽  
Vol 13 (9) ◽  
pp. 5314
Author(s):  
Ho-Soo Kim ◽  
Dong-Kwan Kim ◽  
Geon-Woo Jeon ◽  
Sang-Sun Jo ◽  
Se-Hyun Kim

In general, the stone pagoda structures with discontinuous surfaces are vulnerable to lateral forces and are severely damaged by earthquakes. After the Gyeongju earthquake in 2016 and the Pohang earthquake in 2017, numerous stone pagoda structures were damaged due to slippage, rotation, and the separation of stacked stone. To evaluate seismic resistance of masonry stone pagoda structures, we analyzed the seismic behavior of stone pagoda structures using the shaking table test. Shaking frequency, permanent displacement, maximum acceleration, rocking, and sliding were assessed. Responses to simulations of the Bingol, Gyeongju, and Pohang earthquakes based on the Korean seismic design standard (KDS 41 17 00) were analyzed for return periods of 1000 and 2400 years. We found that the type of stylobate affected the seismic resistance of the stone pagoda structure. When the stylobates were stiff, seismic energy was transferred from lower to upper regions of the stone pagoda, which mainly resulted in deformation of the upper region. When the stylobates were weak, earthquake energy was absorbed in the lower regions, which was associated with large stylobate deformations. The lower part of the tower body was mainly affected by rocking, because the structural members were slender. The higher part of the stone pagoda was mainly affected by sliding, because the load and contact area decreased with height.


Author(s):  
Ho-Soo Kim ◽  
Dong-Kwan Kim ◽  
Geon-Woo Jeon ◽  
Sang-Sun Jo ◽  
Se-Hyun Kim

In general, the stone pagoda structures with discontinuous surfaces are vulnerable to lateral forces and are severely damaged by earthquakes. After the Gyeongju earthquake in 2016 and the Pohang earthquake in 2017, the earthquakes damaged numerous stone pagoda structures due to slippage, rotation and the separation of stacked stone. To evaluate seismic resistance of masonry stone pagoda structure, we analyzed the seismic behavior of stone pagoda structure using shaking table test. Shaking frequency, permanent displacement, maximum acceleration, rocking, and sliding were assessed. Responses to simulations of the Bingol, Gyeongju, and Pohang earthquakes based on Korean seismic design standard (KDS 41 17 00) were analyzed for return periods of 1,000 and 2,400 years. We found that the type of stylobate affected the seismic resistance of stone pagoda structure. When the stylobates were stiff, seismic energy was transferred from lower to upper regions of the stone pagoda, which mainly resulted in deformation of the upper region. When the stylobates were weak, earthquake energy was absorbed in the lower regions; this was associated with large stylobate deformations. The lower part of tower body was mainly affected by rocking, because the structural members were slender. The higher part of the stone pagoda was mainly affected by sliding, because the load and contact area decreased with height.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Hang Qi ◽  
Xiao-Hua Zhao ◽  
Yi-Ping Wu ◽  
Chang Liu

2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


Sign in / Sign up

Export Citation Format

Share Document