Effects of openings on the seismic behavior and performance level of concrete shear walls

2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.

2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


2012 ◽  
Vol 166-169 ◽  
pp. 2924-2928
Author(s):  
Ming Jin Chu ◽  
Yufeng Zhang ◽  
Zhi Juan Sun

Experimental studies showed that vertical cracks appeared along the cold-formed steel or the steel sheet on the adaptive-slit shear walls when the wall was subjected to horizontal earthquake loading, and the adaptive-slit shear wall experienced the loading process from the whole wall section to the slitted wall section. So the appearance and development of the vertical cracks can reflect the seismic behavior of adaptive-slit shear walls. According to the mechanical characteristics of the adaptive-slit shear walls, this paper proposed a method to calculate the cracking load. It is found that the calculated results has a good agreement with the experimental results.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 75
Author(s):  
Ke Shi ◽  
Mengyue Zhang ◽  
Pengfei Li ◽  
Ru Xue ◽  
Peibo You ◽  
...  

To improve the seismic behavior of shear walls, a new composite shear wall composed of a steel-fiber-reinforced high-strength concrete (SFRHC) web and two square concrete-filled steel tube (CFST) columns, namely a steel-fiber-reinforced concrete shear wall with CFST columns, is proposed in this paper. Therefore, the main purpose of this paper is to present an experimental investigation of the seismic behavior of the SFRHC shear wall with CFST columns. Pseudo-static tests were carried out on seven composite shear walls, and the seismic performance of the shear walls was studied and quantified in terms of the aspects of energy consumption, ductility and stiffness degradation. Furthermore, the experimental results indicated that adding steel fiber can effectively restrain the crack propagation of composite shear walls and further help to improve the ductility and energy dissipation capacity of composite shear walls and delay the degradation of their lateral stiffness and force. Moreover, the seismic behavior of the SFRHC shear wall with CFST columns was obviously superior to that of the conventionally reinforced shear wall, in terms of load-bearing capacity, ductility, stiffness and energy dissipation capacity, because of the confinement effect of the CFST columns on the web. Finally, the preliminary study demonstrated that the composite shear wall has good potential to be used in regions with high seismic risk.


2013 ◽  
Vol 368-370 ◽  
pp. 1539-1546
Author(s):  
Can Song ◽  
Feng Li ◽  
Hua Jing Zhao

In order to improve the lateral deformation capacity of the high strength concrete shear wall, partially confined end-zones are usually set in the both ends of the shear wall cross-section. According to the experimental results of 15 high strength concrete shear walls with flexural (flexural-shear) failure, the moment - curvature skeleton curve of this shear wall cross-section is simplified as four linear through cracking point, yield point, peak point and ultimate point. Based on the plane-section assumption, the bending moment and curvature expressions at cracking, yield, peak and ultimate state are derived. At the same time, the effect of partially confined end-zones on peak and ultimate moment-curvature are taken into account. The analysis results show that, the calculated values are in good consistent with the experimental data.


2010 ◽  
Vol 37 (9) ◽  
pp. 1261-1269 ◽  
Author(s):  
Shiling Pei ◽  
John W. van de Lindt ◽  
Chun Ni ◽  
Steven E. Pryor

In July 2009, a full-scale six-storey platform wood frame apartment building was subjected to a series of earthquakes at the world’s largest shake table in Miki, Japan. Two double-midply shear wall stacks were installed in the building from the first storey through to the fifth storey. A continuous anchor tie-down system (ATS) was used to prevent overturning and allow the shear walls to develop their full lateral load capacities. This paper focuses on the behavior of the stacked double-midply shear wall in a full-scale midrise building during a series of triaxial shakes scaled for the city of Los Angeles, California. The stacked midply shear wall achieved a maximum interstorey deformation of 40.4 mm (equivalent to 1.64% drift). The uplift forces measured at the bottom storey of the stacked wall exceeded 760 kN, indicating the need for substantial tie-down systems for this type of wall when utilized in a midrise platform wood frame building.


2011 ◽  
Vol 368-373 ◽  
pp. 1227-1230
Author(s):  
Shi Mei Liu ◽  
Dong Sheng Huang

The formulas to define the minimum ratio of length-to-thickness of the pier cross section of short-pier shear wall is presented, by which the short pier shear wall is distinguished from the irregular cross-section column frame numerically. According to the results of finite element analysis of typical short-pier shear walls, the elastic mechanical performances of them were investigated. Conclusions were achieved that the flange width hardly influence on the moment of piers but significantly influence on the magnitude of stresses in the horizontal section and the top displacements of walls; the deflection curve of short-pier shear wall is flexural-shearing type, equations and diagrams to define the position of the contra-flexural point in the curve are provided.


2013 ◽  
Vol 663 ◽  
pp. 159-163
Author(s):  
Hae Jun Yang ◽  
Hyun Do Yun

In this study, two reinforced concrete (RC) squat shear walls with height-to-length ratio of 0.55 and non-ductile reinforcement details are tested under reversed cyclic loading. Emphasis of the study is placed on the hysteretic behavior and cracking procedure of RC squat shear walls in accordance with the presence and absence of vertical seam on the wall panel. Two specimens had the same rectangular cross-section of 1,100 x 50mm, with wall panel heights of 600mm. To investigate the effect of vertical seams on the wall panel on the structural behavior of shear wall, one wall (CON-S) with three vertical seams with dimension of 260 x 40mm was made and the other (CON-N) was a solid wall without seams. The test results indicated that a squat shear wall with vertical seams exhibited more stable hysteretic behavior than a solid shear wall. Vertical seams on the wall panel improve the ductility and energy dissipation capacity but decrease the maximum strength of RC non-ductile squat shear wall.


Sign in / Sign up

Export Citation Format

Share Document