Comparative Assessment of Heavy Metal Concentrations, Environmental Risks and Phytoremediation Potentials of R. racemosa and A. germinans in Mangroves of Niger Delta, Nigeria

2019 ◽  
Vol 8 (3) ◽  
pp. 1-13
Author(s):  
Nnawugwu Nwawuike ◽  
Hiroaki Ishiga
2022 ◽  
Vol 3 ◽  
Author(s):  
Tim Jesper Suhrhoff

Enhanced weathering is a promising approach to remove carbon dioxide from the atmosphere. However, it may also pose environmental risks through the release of heavy metals, in particular nickel and chromium. In this perspective article I explore the potential role of plants in modulating these heavy metal fluxes. Agricultural basaltic soils may be valuable study sites in this context. However, the effect of biomass harvesting on the accumulation of heavy metals is currently not well studied. Mostly caused by different parent rock concentrations, there is a large variability of heavy metal concentrations in basaltic and ultramafic soils. Hence, to minimize environmental risks of enhanced weathering, basalts with low heavy metal concentrations should be favored. Existing phytoremediation strategies may be used to “phytoprevent” the accumulation of nickel and chromium released from enhanced weathering in soils. As a result, elevated nickel and chromium concentrations in rocks must not preclude enhanced weathering in all settings. In particular, hyperaccumulating plants could be used as part of a crop rotation to periodically remove heavy metals from soils. Enhanced weathering could also be employed on fields or forests of (non-hyper) accumulating plants that have a high primary production of biomass. Both approaches may have additional synergies with phytomining or bioenergy carbon capture and storage, increasing the total amount of carbon dioxide drawdown and at the same time preventing heavy metal accumulation in soils.


Geologija ◽  
2008 ◽  
Vol 50 (4) ◽  
pp. 237-245 ◽  
Author(s):  
Audronė Jankaitė ◽  
Pranas Baltrėnas ◽  
Agnė Kazlauskienė

Sign in / Sign up

Export Citation Format

Share Document