scholarly journals Comparing Zero-inflated Poisson, Zero-inflated Negative Binomial and Zero-inflated Geometric in Count Data with Excess Zero

Author(s):  
M. I. Adarabioyo ◽  
R. A. Ipinyomi

Count data often violate the assumptions of a normal distribution due to the fact that they are bounded by their lowest value which is zero. The Poison distribution is sometimes suggested but when the assumption of equal mean and variance is violated due to over-dispersion and presence of zeros we tend to look in the direction of other models. Zero-inflated data falls in this category. The zero-inflated and hurdle models have been found to fit this scenario. The proportions of zero in the data often affect the choice of the models. Our study used the Monte Carlo design to sample 1000 cases from positively skewed distribution with 1.25 as mean vector and 0.10 as zero-inflation parameter. The data was analysed using the method of the maximum likelihood estimation. The Zero-Inflated Poisson, Zero-Inflated Negative Binomial and Zero-Inflated Geometric were fitted; the standard error and Akaike Information Criterion were obtained as measures of model validation with ZIP outperformed ZINB and ZIG.

2017 ◽  
Vol 9 (3) ◽  
pp. 6
Author(s):  
Volition Tlhalitshi Montshiwa ◽  
Ntebogang Dinah Moroke

Abstract: Sample size requirements are common in many multivariate analysis techniques as one of the measures taken to ensure the robustness of such techniques, such requirements have not been of interest in the area of count data models. As such, this study investigated the effect of sample size on the efficiency of six commonly used count data models namely: Poisson regression model (PRM), Negative binomial regression model (NBRM), Zero-inflated Poisson (ZIP), Zero-inflated negative binomial (ZINB), Poisson Hurdle model (PHM) and Negative binomial hurdle model (NBHM). The data used in this study were sourced from Data First and were collected by Statistics South Africa through the Marriage and Divorce database. PRM, NBRM, ZIP, ZINB, PHM and NBHM were applied to ten randomly selected samples ranging from 4392 to 43916 and differing by 10% in size. The six models were compared using the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Vuong’s test for over-dispersion, McFadden RSQ, Mean Square Error (MSE) and Mean Absolute Deviation (MAD).The results revealed that generally, the Negative Binomial-based models outperformed Poisson-based models. However, the results did not reveal the effect of sample size variations on the efficiency of the models since there was no consistency in the change in AIC, BIC, Vuong’s test for over-dispersion, McFadden RSQ, MSE and MAD as the sample size increased.


2017 ◽  
Vol 9 (3(J)) ◽  
pp. 6-18
Author(s):  
Volition Tlhalitshi Montshiwa ◽  
Ntebogang Dinah Moroke

Abstract: Sample size requirements are common in many multivariate analysis techniques as one of the measures taken to ensure the robustness of such techniques, such requirements have not been of interest in the area of count data models. As such, this study investigated the effect of sample size on the efficiency of six commonly used count data models namely: Poisson regression model (PRM), Negative binomial regression model (NBRM), Zero-inflated Poisson (ZIP), Zero-inflated negative binomial (ZINB), Poisson Hurdle model (PHM) and Negative binomial hurdle model (NBHM). The data used in this study were sourced from Data First and were collected by Statistics South Africa through the Marriage and Divorce database. PRM, NBRM, ZIP, ZINB, PHM and NBHM were applied to ten randomly selected samples ranging from 4392 to 43916 and differing by 10% in size. The six models were compared using the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Vuong’s test for over-dispersion, McFadden RSQ, Mean Square Error (MSE) and Mean Absolute Deviation (MAD).The results revealed that generally, the Negative Binomial-based models outperformed Poisson-based models. However, the results did not reveal the effect of sample size variations on the efficiency of the models since there was no consistency in the change in AIC, BIC, Vuong’s test for over-dispersion, McFadden RSQ, MSE and MAD as the sample size increased.


Author(s):  
Cindy Xin Feng

AbstractCounts data with excessive zeros are frequently encountered in practice. For example, the number of health services visits often includes many zeros representing the patients with no utilization during a follow-up time. A common feature of this type of data is that the count measure tends to have excessive zero beyond a common count distribution can accommodate, such as Poisson or negative binomial. Zero-inflated or hurdle models are often used to fit such data. Despite the increasing popularity of ZI and hurdle models, there is still a lack of investigation of the fundamental differences between these two types of models. In this article, we reviewed the zero-inflated and hurdle models and highlighted their differences in terms of their data generating processes. We also conducted simulation studies to evaluate the performances of both types of models. The final choice of regression model should be made after a careful assessment of goodness of fit and should be tailored to a particular data in question.


2016 ◽  
Vol 63 (1) ◽  
pp. 77-87 ◽  
Author(s):  
William H. Fisher ◽  
Stephanie W. Hartwell ◽  
Xiaogang Deng

Poisson and negative binomial regression procedures have proliferated, and now are available in virtually all statistical packages. Along with the regression procedures themselves are procedures for addressing issues related to the over-dispersion and excessive zeros commonly observed in count data. These approaches, zero-inflated Poisson and zero-inflated negative binomial models, use logit or probit models for the “excess” zeros and count regression models for the counted data. Although these models are often appropriate on statistical grounds, their interpretation may prove substantively difficult. This article explores this dilemma, using data from a study of individuals released from facilities maintained by the Massachusetts Department of Correction.


2021 ◽  
Vol 5 (1) ◽  
pp. 130-140
Author(s):  
Jajang Jajang ◽  
Budi Pratikno ◽  
Mashuri Mashuri

In 2019 the number of people with TB (Tuberculosis) in Banyumas, Central Java, is high (1,910 people have been detected with TB). The number of people infected Tuberculosis (TB) in Banyumas is the count data and it is also the area data. In modeling, the parameter estimation and characteristic of the data need to be considered. Here, we studied comparing Generalized Poisson (GP), negative binomial (NB), and Poisson and CAR.BYM model for TB cases in Banyumas. Here, we use two methods for parameter estimation, maximum likelihood estimation (MLE) and Bayes. The MLE is used for GP and NB models, whereas Bayes is used for Poisson and CAR-BYM. The results showed that Poisson model detected overdispersion where deviance value is 67.38 for 22 degrees of freedom. Therefore, ratio of deviance to degrees of freedom is 3.06 (>1). This indicates that there was overdispersion. The folowing GP, NB, Poisson-Bayes and CAR-BYM are used to modeling TB data in Banyumas and we compare their RMSE. With refer to RMES criteria, we found that CAR-BYM is the best model for modeling TB in Banyumas because its RMSE is smallest.


Econometrics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Brendan P. M. McCabe ◽  
Christopher L. Skeels

The Poisson regression model remains an important tool in the econometric analysis of count data. In a pioneering contribution to the econometric analysis of such models, Lung-Fei Lee presented a specification test for a Poisson model against a broad class of discrete distributions sometimes called the Katz family. Two members of this alternative class are the binomial and negative binomial distributions, which are commonly used with count data to allow for under- and over-dispersion, respectively. In this paper we explore the structure of other distributions within the class and their suitability as alternatives to the Poisson model. Potential difficulties with the Katz likelihood leads us to investigate a class of point optimal tests of the Poisson assumption against the alternative of over-dispersion in both the regression and intercept only cases. In a simulation study, we compare score tests of ‘Poisson-ness’ with various point optimal tests, based on the Katz family, and conclude that it is possible to choose a point optimal test which is better in the intercept only case, although the nuisance parameters arising in the regression case are problematic. One possible cause is poor choice of the point at which to optimize. Consequently, we explore the use of Hellinger distance to aid this choice. Ultimately we conclude that score tests remain the most practical approach to testing for over-dispersion in this context.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 174
Author(s):  
Dexian Zhao ◽  
Zhenkai Sun ◽  
Cheng Wang ◽  
Zezhou Hao ◽  
Baoqiang Sun ◽  
...  

Epiphytic bryophytes are known to perform essential ecosystem functions, but their sensitivity to environmental quality and change makes their survival and development vulnerable to global changes, especially habitat loss in urban environments. Fortunately, extensive urban tree planting programs worldwide have had a positive effect on the colonization and development of epiphytic bryophytes. However, how epiphytic bryophytes occur and grow on planted trees remain poorly known, especially in urban environments. In the present study, we surveyed the distribution of epiphytic bryophytes on tree trunks in a Schima superba Gardn. et Champ. urban plantation and then developed count data models, including tree characteristics, stand characteristics, human disturbance, terrain factors, and microclimate to predict the drivers on epiphytic bryophyte recruitment. Different counting models (Poisson, Negative binomial, Zero-inflated Poisson, Zero-inflated negative binomial, Hurdle-Poisson, Hurdle-negative binomial) were compared for a data analysis to account for the zero-inflated data structure. Our results show that (i) the shaded side and base of tree trunks were the preferred locations for bryophytes to colonize in urban plantations, (ii) both hurdle models performed well in modeling epiphytic bryophyte recruitment, and (iii) both hurdle models showed that the tree height, diameter at breast height (DBH), leaf area index (LAI), and altitude (ALT) promoted the occurrence of epiphytic bryophytes, but the height under branch and interference intensity of human activities opposed the occurrence of epiphytic bryophytes. Specifically, DBH and LAI had positive effects on the species richness recruitment count; similarly, DBH and ALT had positive effects on the abundance recruitment count, but slope had a negative effect. To promote the occurrence and growth of epiphytic bryophytes in urban tree planting programs, we suggest that managers regulate suitable habitats by cultivating and protecting large trees, promoting canopy closure, and controlling human disturbance.


2016 ◽  
Vol 27 (4) ◽  
pp. 1187-1201 ◽  
Author(s):  
Marzieh Mahmoodi ◽  
Abbas Moghimbeigi ◽  
Kazem Mohammad ◽  
Javad Faradmal

This study proposes semiparametric models for analysis of hierarchical count data containing excess zeros and overdispersion simultaneously. The methods discussed in this paper handle nonlinear covariate effects through flexible semiparametric multilevel regression techniques. This is performed by providing a comprehensive comparison of semiparametric multilevel zero-inflated negative binomial and semiparametric multilevel zero-inflated generalized Poisson models under the real and simulated data. An EM algorithm based on Newton–Raphson equations for maximum penalized likelihood estimation approach is developed. The performance of the proposed models is assessed by using a Monte Carlo simulation study. We also illustrated the methods by the analysis of decayed, missing, and filled teeth of children aged 5–14 years old.


Author(s):  
Luay Habeeb Hashim ◽  
Ahmad Naeem Flaih

28   Counts data models cope with the response variable counts, where the number of times that a certain event occurs in a fixed point is called count data, its observations consists of non-negative integers values {0,1,2,…}. Because of the nature of count data, the response variables are usually considered doing not follow normal distribution. Therefore, linear regression is not an appropriate method to analysis count data due to the skewed distribution. Hence, using linear regression model to analysis count data is likely to bias the results, under these limitations, Poisson regression model and “Negative binomial regression” are likely the appropriate models to analysis count data. Sometimes researchers may Counts more zeros than the expected. Count data with many Zeros leads to a concept called “Zero-inflation”. Data with abundant zeros are especially popular in health, marketing, finance, econometric, ecology, statistics quality control, geographical, and environmental fields when counting the occurrence of certain behavioral and natural events, such as frequency of alcohol use, take drugs, number of cigarettes smoked, the occurrence of earthquakes, rainfall, and etc. Some models have been used to analyzing count data such as the “zero- altered Poisson” (ZAP) model and the “negative binomial” model. In this paper, the models, Poisson, Negative Binomial, ZAP, and ZANB were been used to analyze rainfall data.


2011 ◽  
Vol 140 (6) ◽  
pp. 1087-1094 ◽  
Author(s):  
J.-H. LEE ◽  
G. HAN ◽  
W. J. FULP ◽  
A. R. GIULIANO

SUMMARYThe Poisson model can be applied to the count of events occurring within a specific time period. The main feature of the Poisson model is the assumption that the mean and variance of the count data are equal. However, this equal mean-variance relationship rarely occurs in observational data. In most cases, the observed variance is larger than the assumed variance, which is called overdispersion. Further, when the observed data involve excessive zero counts, the problem of overdispersion results in underestimating the variance of the estimated parameter, and thus produces a misleading conclusion. We illustrated the use of four models for overdispersed count data that may be attributed to excessive zeros. These are Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial models. The example data in this article deal with the number of incidents involving human papillomavirus infection. The four models resulted in differing statistical inferences. The Poisson model, which is widely used in epidemiology research, underestimated the standard errors and overstated the significance of some covariates.


Sign in / Sign up

Export Citation Format

Share Document