scholarly journals A Power Gompertz Distribution: Model, Properties and Application to Bladder Cancer Data

Author(s):  
Terna Godfrey Ieren ◽  
Felix M. Kromtit ◽  
Blessing Uke Agbor ◽  
Innocent Boyle Eraikhuemen ◽  
Peter Oluwaseun Koleoso

This paper uses a power transformation approach to introduce a three-parameter probability distribution which gives another extension of the Gompertz distribution known as “Power Gompertz distribution”. The statistical features of the power Gompertz distribution are systematically derived and studied appropriately. The three parameters of the new model are being estimated using the method of maximum likelihood estimation. The proposed distribution has also been compared to the Gompertz distribution using a real life dataset and the result shows that the Power Gompertz distribution has better performance than the Gompertz distribution and hence will be more useful and effective if applied in some real life situations especially survival analysis and cure fraction modeling just like the conventional Gompertz distribution.

Author(s):  
Innocent Boyle Eraikhuemen ◽  
Adana’a Felix Chama ◽  
Abraham Iorkaa Asongo ◽  
Bassa Shiwaye Yakura ◽  
Abdul Haruna Bala

This article introduces and studies a new probability distribution called “Transmuted Power Gompertz distribution”. It looks at the properties of the transmuted power Gompertz distribution. The article also estimates the four parameters of the new model using the method of maximum likelihood estimation. The article further evaluates the goodness-of-fit of the proposed distribution compared to other distributions by means of applications of the model to two real life datasets and the result show that the proposed distribution is more flexible than the fitted existing distributions.


Author(s):  
Terna Godfrey Ieren ◽  
Peter Oluwaseun Koleoso ◽  
Adana’a Felix Chama ◽  
Innocent Boyle Eraikhuemen ◽  
Nasiru Yakubu

This article proposed a new extension of the Inverse Lindley distribution called “Lomax-Inverse Lindley distribution” which is more flexible compared to the Inverse Lindley distribution and other similar models. The paper derives and discusses some Statistical properties of the new distribution which include the limiting behavior, quantile function, reliability functions and distribution of order statistics. The parameters of the new model are estimated by method of maximum likelihood estimation. Conclusively, three lifetime datasets were used to evaluate the usefulness of the proposed model and the results indicate that the proposed extension is more flexible and performs better than the other distributions considered in this study.


Author(s):  
Peter O. Koleoso ◽  
Angela U. Chukwu

The article presents an extension of the Gompertz Makeham distribution using the Weibull-G family of continuous probability distributions proposed by Tahir et al. (2016a). This new extension generates a more flexible model called Weibull-Gompertz Makeham distribution. Some statistical properties of the distribution which include the moments, survival function, hazard function and distribution of order statistics were derived and discussed. The parameters were estimated by the method of maximum likelihood and the distribution was applied to a bladder cancer data. Weibull-Gompertz Makeham distribution performed best (AIC = -6.8677, CAIC = -6.3759, BIC = 7.3924) when compared with other existing distributions of the same family to model bladder cancer data.


2015 ◽  
Vol 26 (4) ◽  
pp. 1737-1755 ◽  
Author(s):  
Ricardo Rocha ◽  
Saralees Nadarajah ◽  
Vera Tomazella ◽  
Francisco Louzada ◽  
Amanda Eudes

An alternative to the standard mixture model is proposed for modeling data containing cured elements or a cure fraction. This approach is based on the use of defective distributions to estimate the cure fraction as a function of the estimated parameters. In the literature there are just two of these distributions: the Gompertz and the inverse Gaussian. Here, we propose two new defective distributions: the Kumaraswamy Gompertz and Kumaraswamy inverse Gaussian distributions, extensions of the Gompertz and inverse Gaussian distributions under the Kumaraswamy family of distributions. We show in fact that if a distribution is defective, then its extension under the Kumaraswamy family is defective too. We consider maximum likelihood estimation of the extensions and check its finite sample performance. We use three real cancer data sets to show that the new defective distributions offer better fits than baseline distributions.


Author(s):  
Kuje Samson ◽  
Abubakar, Mohammad Auwal ◽  
Asongo, Iorkaa Abraham ◽  
Alhaji, Ismaila Sulaiman

This article uses the odd Lindley-G family of distributions to propose and study a new compound distribution called “odd Lindley-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lindley-Kumaraswamy distribution are defined and studied by deriving and discussing many properties of the distribution such as the ordinary moments, moment generating function, characteristics function, quantile function, reliability functions, order statistics and other useful measures. The unknown model parameters are also estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real life datasets. The results show that the proposed distribution outperforms the other fitted compound models selected for this study and hence it is a flexible generalization of the Kumaraswamy distribution.


Author(s):  
Innocent Boyle Eraikhuemen ◽  
Terna Godfrey Ieren ◽  
Tajan Mashingil Mabur ◽  
Mohammed Sa’ad ◽  
Samson Kuje ◽  
...  

The article presents an extension of the Gompertz-Makeham distribution using the Lomax generator of probability distributions. This generalization of the Gompertz-Makeham distribution provides a more skewed and flexible compound model called Lomax Gompertz-Makeham distribution. The paper derives and discusses some Mathematical and Statistical properties of the new distribution. The unknown parameters of the new model are estimated via the method of maximum likelihood estimation. In conclusion, the new distribution is applied to two real life datasets together with two other related models to check its flexibility or performance and the results indicate that the proposed extension is more flexible compared to the other two distributions considered in the paper based on the two datasets used.


Author(s):  
Umar Kabir ◽  
Terna Godfrey IEREN

This article proposed a new distribution referred to as the transmuted Exponential Lomax distribution as an extension of the popular Lomax distribution in the form of Exponential Lomax by using the Quadratic rank transmutation map proposed and studied in earlier research. Using the transmutation map, we defined the probability density function (PDF) and cumulative distribution function (CDF) of the transmuted Exponential Lomax distribution. Some properties of the new distribution were extensively studied after derivation. The estimation of the distribution’s parameters was also done using the method of maximum likelihood estimation. The performance of the proposed probability distribution was checked in comparison with some other generalizations of Lomax distribution using three real-life data sets. The results obtained indicated that TELD performs better than the other distributions comprising power Lomax, Exponential-Lomax, and the Lomax distributions.


Author(s):  
Adamu Abubakar Umar ◽  
Innocent Boyle Eraikhuemen ◽  
Peter Oluwaseun Koleoso ◽  
Jerry Joel ◽  
Terna Godfrey Ieren

The Quadratic rank transmutation map proposed for introducing skewness and flexibility into probability models with a single parameter known as the transmuted parameter has been used by several authors and is proven to be useful. This article uses this method to add flexibility to the Lindley-Exponential distribution which results to a new continuous distribution called “transmuted Lindley-Exponential distribution”. This paper presents the definition, validation, properties, application and estimation of unknown parameters of the transmuted Lindley-Exponential distribution using the method of maximum likelihood estimation. The new distribution has been applied to a real life dataset on the survival times (in days) of 72 guinea pigs and the result gives good evidence that the transmuted Lindley-Exponential distribution is better than the Lindley-Exponential distribution, Exponential distribution and Lindley distribution based on the dataset used.


Author(s):  
A. Omale ◽  
O. E. Asiribo ◽  
A. Yahaya

This article introduces a new distribution called the Lomax-Gompertz distribution developed through a Lomax Generator proposed in an earlier study. Some statistical properties of the proposed distribution comprising moments, moment generating function, characteristics function, quantile function and the distribution of order statistics were derived. The plots of the probability density function revealed that it is positively skewed. The model parameters have been estimated using the method of maximum likelihood. The plot the of survival function indicates that the Lomax-Gompertz distribution could be used to model time or age-dependent data, where probability of survival is believed to be  decreasing  with time or age. The performance of the Lomax-Gompertz distribution has been compared to other generalizations of the Gompertz distribution using three real-life datasets used in earlier researches.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Pelumi E. Oguntunde ◽  
Mundher A. Khaleel ◽  
Mohammed T. Ahmed ◽  
Adebowale O. Adejumo ◽  
Oluwole A. Odetunmibi

Developing new compound distributions which are more flexible than the existing distributions have become the new trend in distribution theory. In this present study, the Lomax distribution was extended using the Gompertz family of distribution, its resulting densities and statistical properties were carefully derived, and the method of maximum likelihood estimation was proposed in estimating the model parameters. A simulation study to assess the performance of the parameters of Gompertz Lomax distribution was provided and an application to real life data was provided to assess the potentials of the newly derived distribution. Excerpt from the analysis indicates that the Gompertz Lomax distribution performed better than the Beta Lomax distribution, Weibull Lomax distribution, and Kumaraswamy Lomax distribution.


Sign in / Sign up

Export Citation Format

Share Document