Solution of Nonlinear Space–time Fractional Differential Equation via the Triple Fractional Riccati Expansion Method

2014 ◽  
Vol 4 (24) ◽  
pp. 3464-3475 ◽  
Author(s):  
E. Abdel-Salam ◽  
M. Jazmati

In this study, we have successfully found some travelling wave solutions of the variant Boussinesq system and fractional system of two-dimensional Burgers' equations of fractional order by using the -expansion method. These exact solutions contain hyperbolic, trigonometric and rational function solutions. The fractional complex transform is generally used to convert a partial fractional differential equation (FDEs) with modified Riemann-Liouville derivative into ordinary differential equation. We showed that the considered transform and method are very reliable, efficient and powerful in solving wide classes of other nonlinear fractional order equations and systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Demir ◽  
Mine Aylin Bayrak ◽  
Ebru Ozbilge

The motivation of this study is to construct the truncated solution of space-time fractional differential equations by the homotopy analysis method (HAM). The first space-time fractional differential equation is transformed into a space fractional differential equation or a time fractional differential equation before the HAM. Then the power series solution is constructed by the HAM. Finally, taking the illustrative examples into consideration we reach the conclusion that the HAM is applicable and powerful technique to construct the solution of space-time fractional differential equations.


2021 ◽  
Vol 5 (3) ◽  
pp. 83
Author(s):  
Bilgi Görkem Yazgaç ◽  
Mürvet Kırcı

In this paper, we propose a fractional differential equation (FDE)-based approach for the estimation of instantaneous frequencies for windowed signals as a part of signal reconstruction. This approach is based on modeling bandpass filter results around the peaks of a windowed signal as fractional differential equations and linking differ-integrator parameters, thereby determining the long-range dependence on estimated instantaneous frequencies. We investigated the performance of the proposed approach with two evaluation measures and compared it to a benchmark noniterative signal reconstruction method (SPSI). The comparison was provided with different overlap parameters to investigate the performance of the proposed model concerning resolution. An additional comparison was provided by applying the proposed method and benchmark method outputs to iterative signal reconstruction algorithms. The proposed FDE method received better evaluation results in high resolution for the noniterative case and comparable results with SPSI with an increasing iteration number of iterative methods, regardless of the overlap parameter.


Sign in / Sign up

Export Citation Format

Share Document