Hybrid Genetic Algorithm for Constrained Nonlinear Optimization Problems

2015 ◽  
Vol 7 (6) ◽  
pp. 466-480 ◽  
Author(s):  
S. Nasr ◽  
M. El-Shorbagy ◽  
I. El-Desoky ◽  
Z. Hendawy ◽  
A. Mousa
Author(s):  
William P. Fox

We present both classical analytical, numerical, and heuristic techniques to solve constrained optimization problems relating to business, industry, and government. We briefly discuss other methods such as genetic algorithm. Today's business environment has many resource challenges to their attempts to maximize profits or minimize costs for which constrained optimization might be used. Facility location and transportation networks techniques are often used as well as the traveling salesman problem.


2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Maha Ata Al-Furhud ◽  
Zakir Hussain Ahmed

The multiple travelling salesman problem (MTSP), an extension of the well-known travelling salesman problem (TSP), is studied here. In MTSP, starting from a depot, multiple salesmen require to visit all cities so that each city is required to be visited only once by one salesman only. It is NP-hard and is more complex than the usual TSP. So, exact optimal solutions can be obtained for smaller sized problem instances only. For large-sized problem instances, it is essential to apply heuristic algorithms, and amongst them, genetic algorithm is identified to be successfully deal with such complex optimization problems. So, we propose a hybrid genetic algorithm (HGA) that uses sequential constructive crossover, a local search approach along with an immigration technique to find high-quality solution to the MTSP. Then our proposed HGA is compared against some state-of-the-art algorithms by solving some TSPLIB symmetric instances of several sizes with various number of salesmen. Our experimental investigation demonstrates that the HGA is one of the best algorithms.


Author(s):  
M. H. MEHTA ◽  
V. V. KAPADIA

Engineering field has inherently many combinatorial optimization problems which are hard to solve in some definite interval of time especially when input size is big. Although traditional algorithms yield most optimal answers, they need large amount of time to solve the problems. A new branch of algorithms known as evolutionary algorithms solve these problems in less time. Such algorithms have landed themselves for solving combinatorial optimization problems independently, but alone they have not proved efficient. However, these algorithms can be joined with each other and new hybrid algorithms can be designed and further analyzed. In this paper, hierarchical clustering technique is merged with IAMB-GA with Catfish-PSO algorithm, which is a hybrid genetic algorithm. Clustering is done for reducing problem into sub problems and effectively solving it. Results taken with different cluster sizes and compared with hybrid algorithm clearly show that hierarchical clustering with hybrid GA is more effective in obtaining optimal answers than hybrid GA alone.


Sign in / Sign up

Export Citation Format

Share Document