Study on SIR Epidemic Model with Constant Vaccination: A Differential Transformation Approach

Author(s):  
S. F. M. Ibrahim ◽  
Soad Moftah Ismail
2012 ◽  
Vol 8 (2) ◽  
Author(s):  
Fandy Fandy ◽  
Andi Fajeriani Wyrasti ◽  
Tri Widjajanti

<em>Stability and equilibrium of malaria&rsquo;s epidemics in Manokwari Barat district based on SIR epidemic model will be discussed in this paper. The SIR epidemic model can be applied to make a model of endemic diseases like malaria. Based on this research, there are 2 types of the equilibrium of malaria&rsquo;s epidemics in Manokwari Barat District, endemic and non endemic point.</em>


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Chunxia Wang ◽  
Kai Wang

AbstractIn this paper, we study a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage. For the deterministic model, we give the basic reproduction number $R_{0}$ R 0 which determines the extinction or prevalence of the disease. In addition, for the stochastic model, we prove existence and uniqueness of the positive solution, and extinction and persistence in mean. Furthermore, we give numerical simulations to verify our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wencai Zhao ◽  
Juan Li ◽  
Xinzhu Meng

SIR epidemic model with nonlinear pulse vaccination and lifelong immunity is proposed. Due to the limited medical resources, vaccine immunization rate is considered as a nonlinear saturation function. Firstly, by using stroboscopic map and fixed point theory of difference equations, the existence of disease-free periodic solution is discussed, and the globally asymptotical stability of disease-free periodic solution is proven by using Floquet multiplier theory and differential impulsive comparison theorem. Moreover, by using the bifurcation theorem, sufficient condition for the existence of positive periodic solution is obtained by choosing impulsive vaccination period as a bifurcation parameter. Lastly, some simulations are given to validate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document