Study on the Influence of Longitudinal Diffusion on the Transport of Dust Particles Emitted from a Fixed Source

Author(s):  
Khaled S. Al-Mashrafi
2016 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Khaled Al-Mashrafi

<p>The mathematical model for the diffusion of dust particles emitted from a fixed source in the presence of the longitudinal diffusion and absence of latitudinal and vertical diffusions, is investigated. The diffusion of dust particles in the atmosphere is governed by the atmospheric diffusion equation. In the previous paper [1], the general case of the time-dependent diffusion equation in the presence of a point source whose strength is dependent on time, was solved. The calculations showed that the diffusion parameters play an important role in the spread of the dust particles in the atmosphere. In the previous paper, we examined the model in the presence of vertical diffusion and absence of other diffusions to show that for small times, the dust spreads with a front that travels with the speed of the wind. In the current paper, the vertical and latitudinal diffusions are absent while the longitudinal diffusion is present. It is found that the solution depends on the source of time dependence. To study the nature of the solution, two special cases of the source are specified. In the both cases, it is found that there is no discontinuity front, and the dust particles spread slowly into the direction of the wind.</p>


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


2003 ◽  
Vol 9 (4) ◽  
pp. 67-72 ◽  
Author(s):  
Yu.O. Klymenko ◽  
◽  
О.К. Cheremnykh ◽  

2013 ◽  
Vol 16 (12) ◽  
pp. 1063-1074 ◽  
Author(s):  
Praveen K. Sharma ◽  
Anita Tiwari ◽  
Rajendra K. Chhajlani

Author(s):  
Yoshihiro Toki ◽  
Yousuke Ogino ◽  
Naofumi Ohnishi ◽  
Keisuke Sawada

Sign in / Sign up

Export Citation Format

Share Document