Plasma Sources for a High Flux of Active Species

2021 ◽  
pp. 202-231
Author(s):  
Alinka Vesel ◽  
Miran Mozetic ◽  
A. Ricard
2004 ◽  
Vol 75 (9) ◽  
pp. 3068-3070
Author(s):  
Do-Yun Kim ◽  
Eui-Wan Lee ◽  
Myoung-Bok Lee

1998 ◽  
Vol 537 ◽  
Author(s):  
A.J. Ptak ◽  
K.S. Ziemer ◽  
M.R. Millecchia ◽  
C.D. Stinespring ◽  
T.H. Myers

AbstractThe operating regimes of two rf-plasma sources, an Oxford CARS-25 and an EPI Unibulb, have been extensively characterized. By changing the exit aperture configuration and using an electrostatic deflector, the Oxford source could produce either primarily atomic nitrogen, atomic nitrogen mixed with low energy ions, or a large flux of higher energy ions (>65eV) as the active species in a background of neutral molecular nitrogen. The EPI source produced a significant flux of metastable molecular nitrogen as the active species with a smaller atomic nitrogen component. Nitridation of sapphire using each source under the various operating conditions indicate that the reactivity was different for each type of active nitrogen. Boron contamination originating from the pyrolytic boron nitride plasma cell liner was observed.


1999 ◽  
Vol 4 (S1) ◽  
pp. 161-166 ◽  
Author(s):  
A.J. Ptak ◽  
K.S. Ziemer ◽  
M.R. Millecchia ◽  
C.D. Stinespring ◽  
T.H. Myers

The operating regimes of two rf-plasma sources, an Oxford CARS-25 and an EPI Unibulb, have been extensively characterized. By changing the exit aperture configuration and using an electrostatic deflector, the Oxford source could produce either primarily atomic nitrogen, atomic nitrogen mixed with low energy ions, or a large flux of higher energy ions (>65 eV) as the active species in a background of neutral molecular nitrogen. The EPI source produced a significant flux of metastable molecular nitrogen as the active species with a smaller atomic nitrogen component. Nitridation of sapphire using each source under the various operating conditions indicate that the reactivity was different for each type of active nitrogen. Boron contamination originating from the pyrolytic boron nitride plasma cell liner was observed.


1988 ◽  
Vol 23 (12) ◽  
pp. 1889-1892 ◽  
Author(s):  
Yu. I. Belchenko ◽  
A.S. Kupriyanov

Geo&Bio ◽  
2019 ◽  
Vol 2019 (17) ◽  
pp. 116-135 ◽  
Author(s):  
Vira V. Protopopova ◽  
◽  
Myroslav Shevera

2010 ◽  
Vol 130 (10) ◽  
pp. 955-962 ◽  
Author(s):  
Kaori Shigeta ◽  
Yoichi Nagata ◽  
Takahiro Iwai ◽  
Hidekazu Miyahara ◽  
Akitoshi Okino

Sign in / Sign up

Export Citation Format

Share Document