Study on Electron Tunneling in Microtubules: A Model Explaining Both Mendelian Genetics and Quantum Computing Memory

2021 ◽  
pp. 36-39
Author(s):  
George Pieczenik ◽  
Srul David Pieczenik
Author(s):  
J. A. Panitz

Tunneling is a ubiquitous phenomenon. Alpha particle disintegration, the Stark effect, superconductivity in thin films, field-emission, and field-ionization are examples of electron tunneling phenomena. In the scanning tunneling microscope (STM) electron tunneling is used as an imaging modality. STM images of flat surfaces show structure at the atomic level. However, STM images of large biological species deposited onto flat surfaces are disappointing. For example, unstained virus particles imaged in the STM do not resemble their TEM counterparts.It is not clear how an STM image of a biological species is formed. Most biological species are large compared to the nominal electrode separation of ∼ 1nm that is required for electron tunneling. To form an image of a biological species, the tunneling electrodes must be separated by a distance that would normally be too large for a tunneling current to be observed.


Author(s):  
Patrick P. Camus

The theory of field ion emission is the study of electron tunneling probability enhanced by the application of a high electric field. At subnanometer distances and kilovolt potentials, the probability of tunneling of electrons increases markedly. Field ionization of gas atoms produce atomic resolution images of the surface of the specimen, while field evaporation of surface atoms sections the specimen. Details of emission theory may be found in monographs.Field ionization (FI) is the phenomena whereby an electric field assists in the ionization of gas atoms via tunneling. The tunneling probability is a maximum at a critical distance above the surface,xc, Fig. 1. Energy is required to ionize the gas atom at xc, I, but at a value reduced by the appliedelectric field, xcFe, while energy is recovered by placing the electron in the specimen, φ. The highest ionization probability occurs for those regions on the specimen that have the highest local electric field. Those atoms which protrude from the average surfacehave the smallest radius of curvature, the highest field and therefore produce the highest ionizationprobability and brightest spots on the imaging screen, Fig. 2. This technique is called field ion microscopy (FIM).


2019 ◽  
Author(s):  
Mark Fingerhuth ◽  
Tomáš Babej ◽  
Peter Wittek

1998 ◽  
Vol 168 (2) ◽  
pp. 219
Author(s):  
V.A. Krupenin ◽  
S.V. Lotkhov ◽  
H. Scherer ◽  
A.B. Zorin ◽  
F.-J. Ahlers ◽  
...  

2019 ◽  
Author(s):  
Matěj Velický ◽  
Sheng Hu ◽  
Colin R. Woods ◽  
Peter S. Toth ◽  
Viktor Zólyomi ◽  
...  

Marcus-Hush theory of electron transfer is one of the pillars of modern electrochemistry with a large body of supporting experimental evidence presented to date. However, some predictions, such as the electrochemical behavior at microdisk electrodes, remain unverified. Herein, we present a study of electron tunneling across a hexagonal boron nitride barrier between a graphite electrode and redox levels in a liquid solution. This was achieved by the fabrication of microdisk electrodes with a typical diameter of 5 µm. Analysis of voltammetric measurements, using two common redox mediators, yielded several electrochemical parameters, including the electron transfer rate constant, limiting current, and transfer coefficient. They show a significant departure from the Butler-Volmer behavior in a clear manifestation of the Marcus-Hush theory of electron transfer. In addition, our system provides a novel experimental platform, which could be applied to address a number of scientific problems such as identification of reaction mechanisms, surface modification, or long-range electron transfer.


Sign in / Sign up

Export Citation Format

Share Document