The Uncertainty Principle: A Variable Concept. It Depends on the Complex Physical Time Only

Author(s):  
Prasenjit Debnath
2014 ◽  
Vol 3 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Piero Chiarelli

This work shows that in the frame of the stochastic generalization of the quantum hydrodynamic analogy (QHA) the uncertainty principle is fully compatible with the postulate of finite transmission speed of light and information. The theory shows that the measurement process performed in the large scale classical limit in presence of background noise, cannot have a duration smaller than the time need to the light to travel the distance up to which the quantum non-local interaction extend itself. The product of the minimum measuring time multiplied by the variance of energy fluctuation due to presence of stochastic noise shows to lead to the minimum uncertainty principle. The paper also shows that the uncertainty relations can be also derived if applied to the indetermination of position and momentum of a particle of mass m in a quantum fluctuating environment.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2019 ◽  
Author(s):  
Matheus Pereira Lobo

This article addresses the connection of the UNCERTAINTY PRINCIPLE with the WIGNER FUNCTION.


2019 ◽  
Author(s):  
Vitaly Kuyukov

The uncertainty principle between the Hubble parameter and the volume of space.


2019 ◽  
Vol 51 (1) ◽  
pp. 135-146
Author(s):  
Yūji Nawata

Abstract Contemporary physics often speaks of “multiverses” or “parallel universes,” seriously debating whether our cosmic space is only one of many2. However many such spaces there may be, for now let us limit ourselves to the space in which we find ourselves; let us focus furthermore on the planet we are on, and further still on humanity upon this planet. Let us attempt to write a short history of the culture produced by humanity on this globe. We humans possessed and indeed possess a shared space, the globe, where a physical time common to us all passes. Let us survey the history of the world’s culture within this shared context.


Author(s):  
Anindo Bhattacharjee

The romanticism of management for numbers, metrics and deterministic models driven by mathematics, is not new. It still exists. This is exactly the problem which classical physicists had in the late 19th century until Werner Heisenberg brought the uncertainty principle and opened the doors of quantum physics that challenged the deterministic view of the physical world mostly driven by the Newtonian view. In this paper, we propose an uncertainty principle of management and then list a set of factors which capture this uncertainty quite well and arrive at a new view of scientific management thought. The new view which we call as the Quantum view of Management (QVM) will be based on the major tenets from the ancient philosophical traditions viz., Jainism, Taoism, Advaita Vedanta, Buddhism, Greek philosophers (like Hereclitus) etc.


Author(s):  
Frank S. Levin

The subject of Chapter 8 is the fundamental principles of quantum theory, the abstract extension of quantum mechanics. Two of the entities explored are kets and operators, with kets being representations of quantum states as well as a source of wave functions. The quantum box and quantum spin kets are specified, as are the quantum numbers that identify them. Operators are introduced and defined in part as the symbolic representations of observable quantities such as position, momentum and quantum spin. Eigenvalues and eigenkets are defined and discussed, with the former identified as the possible outcomes of a measurement. Bras, the counterpart to kets, are introduced as the means of forming probability amplitudes from kets. Products of operators are examined, as is their role underpinning Heisenberg’s Uncertainty Principle. A variety of symbol manipulations are presented. How measurements are believed to collapse linear superpositions to one term of the sum is explored.


Sign in / Sign up

Export Citation Format

Share Document