scholarly journals Effect of Residue Management and Cropping System on Direct Deeded Rice and System Productivity

Author(s):  
Alisha Kumari ◽  
Vinod Kumar ◽  
Rajan Kumar ◽  
Mukesh Kumar

A field experiment was conducted during three seasons of 2018-19 at RPCAU, Pusa to evaluate the Effect of Residue Management and Cropping Systems on direct seeded rice and System productivity. Treatments comprised cropping systems in main plots: C1 - Rice - Wheat - Fallow, C2 - Rice - Wheat - Green Gram, C3 - Rice - Maize - Dhaincha, C4 - Rice - Maize + Potato - Dhaincha, C5 - Rice - Maize + Green Pea - Dhaincha and moisture regimes in sub plots with 3 days disappearance of ponded water in kharif season, three levels of IW/CPE ratio in rabi season I1 - IW/CPE = 0.6, I2 - IW/CPE = 0.8, I3 - IW/CPE = 1.0. Maximum number of tillers (273.55/m2), dry matter production (1464.91g/m2), number of panicles/m2 (267.80 m2), grain yield (52.21q/ha) of rice was observed in C5 cropping system and panicle length (23.99 cm cm), number of grains /panicle (160.05), straw yield (69.58 q/ha) in C4 which was  significantly superior than C1 cropping system. Plant height and 1000 grain weight, harvest index and Land Use Efficiency (LUE) were non significantly affected by different cropping systems. Maximum Rice Economic Yield (REY) of 24.26 t/ha and Production efficiency (PE) 73.97 kg/ha/day was observed in C4 which was significantly superior to rest of treatments. In sub plot maximum REY (15.905 t/ha) and PE (49.81 kg/ha/day) were observed in IW/CPE ratio 1 which was significantly superior to IW/CPE ratio 0.6 and 0.8.

2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Mukesh Kumar ◽  
A.K. Ghorai ◽  
S Mitra ◽  
B Majumdar ◽  
M Ramesh Naik ◽  
...  

A field experiment was conducted to study the effect of nutrient and crop residue incorporation on productivity jute based cropping system in split plot design during 2012-14. The main plot comprised of five cropping sequences viz., rice-rice, jute-rice-wheat, jute-rice-baby corn-jute (for leafy vegetable), jute-rice-garden pea, jute-rice-mustard-mungbean andfour nutrient management practicesviz. 75% recommended doses of fertilizers (RDF) with and without crop residue (rice, wheat, corn, garden pea and mungbean with their respective cropping sequence) and 100 % RDF with and without crop residue in sub plot. Jute-rice-baby corn- jute(leafy vegetable) cropping system recorded the highest system productivity (192.36q/ha) followed by jute-rice-garden pea (88.6 q/ha), water use efficiency (34.86 kg/m3), production efficiency (65.9 kg/ha/day), and economic efficiency (Rs724/ha/day) followed by jute-rice-garden pea recorded those parameter were (89.4 q/ha), 27.01 kg/m3, 30.31 kg/ha/day and Rs.346/ha/day, respectively.The land use efficacy (94.5%) was higher in jute-rice-mustard- mungbean followed by jute-rice-baby corn-veg. jute(93.2%). The higher system productivity of all crop sequences was recorded with 100 % RDF with crop residue. However it was at par with 75% RDF with crop residue and100% RDF.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1622
Author(s):  
Mukesh Kumar ◽  
Sabyasachi Mitra ◽  
Sonali Paul Mazumdar ◽  
Bijan Majumdar ◽  
Amit Ranjan Saha ◽  
...  

Crop diversity through residue incorporation is the most important method for sustaining soil health. A field study was conducted over five consecutive years (2012–2017) to see the impact of residue incorporartions in Inceptisol of eastern India. The main plot treatments had five cropping systems (CS), namely, fallow−rice−rice (FRR), jute−rice−wheat (JRW), jute−rice−baby corn (JRBc), jute−rice−vegetable pea (JRGp), jute−rice−mustard−mungbean/green gram (JRMMu), which cinsisted of four sub-plots with varied nutrient and crop residue management (NCRM) levels, namely crops with no residue +75% of the recommended dose of fertilizers (RDF) (F1R0), crops with the residue of the previous crops +75% RDF (F1R1), crops with no resiude +100% RDF (F2R0), and crops with residue +100% RDF (F2R1). The highest system productivity was obtained for JRBc (15.3 Mg·ha−1), followed by JRGp (8.81 Mg·ha−1) and JRMMu (7.61 Mg·ha−1); however, the highest sustainability index was found with the JRGp cropping system (0.88), followed by JRMMu (0.82). Among the NCRMs, the highest productivity (8.78 Mg·ha−1) and sustainability index (0.83) were recorded in F2R1. Five soil parameters, namely, bulk density, available K, urease activity, dehydrogenase activity, and soil microbial biomass carbon (SMBC), were used in the minimum data-set (MDS) for the calculation of the soil quality index (SQI). The best attainment of SQI was found in the JRGp system (0.63), closely followed by the JRMMu (0.61) cropping system.


2020 ◽  
Vol 18 (1) ◽  
pp. 129-136
Author(s):  
AA Mahmud ◽  
M Jahangir Alam ◽  
MA Islam ◽  
MSH Molla ◽  
MA Ali

Increasing system productivity in a planned way is an important base for attaining food security, where bringing marginal land like Charland under intensive crop cultivation is highly desirable. The field trial was conducted in the Charland of the Jamuna River under Saghataupazilla of Gaibandha during 2017- 18 & 2018-19 to increase the productivity and profitability through the development of three crops-based improved cropping patterns instead of the local practice (double-crop). Three crops based improved cropping pattern namely Millet (BARI Kaon-2)-Jute (O-9897)-T. Aman (Gainja) was compared with the existing cropping pattern of Millet (Local)-Fallow-T. Aman (Gainja). The experiment was laid out in six dispersed replications maintaining RCB design. The introduced improved cropping pattern produced the higher system productivity based on rice equivalent yield, REY (12.95 t ha-1), than the existing cropping pattern (4.20 t ha-1), which is three times higher than the existing pattern. Total field duration and turnaround time were 323 and 42 days, respectively in improved pattern and 215 and 150 days, respectively in the existing pattern, which revealed that 108 days more could be made productive through the introduction of improved cropping pattern. The alternate pattern increased production efficiency and land-use efficiency by 35% and 30%, respectively than that of the existing cropping system. The gross margin was also three times higher in the improved cropping pattern (1, 41,600 Tk ha-1 yr-1) compared to the farmers’ existing cropping pattern (38,350 Tk ha-1 yr-1). The marginal benefit-cost ratio (MBCR) was calculated 2.44 in an improved cropping pattern over the existing cropping pattern. The inclusion of an extra one crop (Jute) in the existing cropping pattern and replacement of the local millet variety by high yielding variety (BARI Kaon-2) could play a significant role to increase the system productivity as well as profitability in the Charland of Saghata, Gaibandha. The Agriculturists 2020; 18(1) 129-136


Author(s):  
Rentapalli Balaji ◽  
Karam Husain ◽  
Uma Shankar Tiwari

A field experiment was executed with ten crop sequences during 2016-17 at C.S.Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh. All these sequences were evaluated for their system productivity, production efficiency, land use efficiency and economic analysis. Highest system productivity 320.43 q REY /ha was obtained through maize + black gram – potato – onion crop sequence followed by maize – garlic – green gram (291.1 q REY /ha). Highest land use efficiency (90.1%) measured through Scented rice – wheat –okra crop sequence while maximum production efficiency 121.83 kg/ha/ day was achieved by maize + black gram – potato – onion crop sequence. The highest net return of Rs.282799.0 /ha, crop profitability of Rs. 1075.28 /ha / day and system profitability of Rs. 774.79 /ha/day was obtained through maize + black gram – potato – onion followed by maize – garlic – green gram (G+R) crop sequence, while highest return per rupee investment (1:3.24) was computed on hybrid rice- wheat cropping system followed by maize – mustard- onion crop sequence (1: 3.21). Electrochemical properties were also evaluated in each cropping sequence. On the basis of different biological indices and economical analysis maize + black gram – potato – onion crop sequence observed as biological efficient followed by maize – garlic – green gram (G+R) crop sequence over all other cropping systems.


Author(s):  
Mokidul Islam ◽  
L. K. Nath ◽  
T. Samajdar

A field experiment was conducted at Instructional Farm of ICAR- Krishi Vigyan Kendra, Tura during kharif, pre-rabi and rabi season of 2011-12 to 2013-14 to determine the suitable production potential, profitability, resource use efficiency and sustainability of diversified maize-legumes cropping system. The five cropping sequences viz., CS1: Maize + Blackgram (1:2) – green gram + maize (2:1) – tomato, CS2: maize + green gram(1:2) – green gram + maize (2:1) – tomato, CS3: maize + groundnut(1:2) – green gram + maize (2:1) – tomato, CS4: maize + Ssybean(1:2) – tomato and CS5: maize sole – green gram – tomato were replicated four times using a randomized block design on sandy loam soil with low to medium fertility level and slightly acidic in reaction. The cropping system “Maize + Green gram(1:2) – green gram + maize (1:1) – tomato” was found to be most remunerative and sustainable with system productivity (175.49 q/ha), net return (Rs.3,38,725/ha), profitability (Rs. 928.01 /ha/day), benefit cost ratio (4.40), sustainable yield index (1.00), production efficiency (Rs.58.30/ha/day), relative economic efficiency (162.72%), except land use efficiency(LUE) which was the highest (85.75%) in “maize + groundnut(1:2) – green gram + maize (1:1) – tomato” cropping system. The lowest system productivity, net returns, profitability, production efficiency, land use efficiency etc was found in maize+ soybean (1:2)- tomato followed by maize-greengram-tomato cropping system. Hence, the cropping sequence maize + green gram(1:2) – green gram + maize (1:1) – tomato and maize + groundnut(1:2) – green gram + maize (1:1) – tomato were found to be the productive, profitable, remunerative, resource use efficient and sustainable in the mid hills sub-tropical regions of India.


2019 ◽  
Vol 17 (1-2) ◽  
pp. 14-30
Author(s):  
M Jahangir Alam ◽  
S Ahmed ◽  
MK Islam ◽  
R Islam ◽  
M Islam

Cropping systems of Bangladesh are highly diverse and cultivation costs of puddled transplanted rice (PTR) are high. Therefore, an improved system is needed to address the issues, a field experiment was conducted during 2011-2013 to evaluate system intensification with varying degrees of cropping systems and residue retention. Four cropping systems (CSE) namely CSE1: T. boro rice-T. aman rice (control), CSE2: wheat-mungbean-T. aman rice (wheat and mungbean sown using a power tiller-operated seeder (PTOS) with full tillage in a single pass; puddled transplanted aman), CSE3: wheat-mungbean-dry seeded DS aman rice (DSR), and CSE4: wheat-mungbean-DS aman rice (all sown by PTOS with strip tillage) were compared. Two levels of aman rice residue retention (removed; partial retention i.e. 40 cm of standing stubble) were compared in sub plots. Grain yield was significantly higher (by 11%) when wheat was grown after DSR than PTR. Similarly, PTR and DSR (aman rice) produced statistically similar crop yields. Rice residue retention resulted a significantly higher (by 10%) wheat yield and a slightly increased (by 6%) mungbean yield than that of residues removed. The system productivity of CSE4 was significantly higher (by 10%) than CSE1 when averaged of the two years data. Partial aman residue retention gave significantly higher system yield than residue removal (by 0.6 t ha-1). After two years, no effect of CSE or partial aman residue retention was found on soil physical property (bulk density) of the top soil. Therefore, CSE4 along with residue retention would be more effective for sustainable crop production. The Agriculturists 2019; 17(1-2) 14-30


2019 ◽  
Vol 11 (1) ◽  
pp. 130-137
Author(s):  
Mahmoodreza SAEIDI ◽  
Yaghoub RAEI ◽  
Rouhollah AMINI ◽  
Akbar TAGHIZADEH ◽  
Bahman PASBAN-ESLAM ◽  
...  

Cropping systems of safflower (Carthamus tinctorius L.) with faba bean (Vicia faba L.) under different fertility were compared with sole cropping of each crop during 2015 and 2016 at the Research Farm of Tabriz University in Iran. The treatments were cropping systems (safflower and faba bean sole croppings, intercropping systems of safflower and faba bean with ratios of 1:1 and 2:1), and nutrient levels (100% chemical fertilizers, 60%, 30% chemical + biofertilizers and no fertilizer). A factorial set of treatments based on a randomized complete block design replicated three times was used. Cropping system and fertility effects were significant for yield and yield components of each crop. Yield and yield components were increased with the integrated use of 60% chemical plus biofertilizers for both years, while seed yield was reduced by intercropping. Maximum land equivalent ratio (LER), relative value total (RVT), system productivity index (SPI) and monetary advantage index (MAI) were achieved in nutritive level of 60% chemical plus biofertilizers as intercropped plants in ratio of 1:1 for both years. The total actual yield loss (AYL) values were positive and greater than zero in all mixtures, indicating an advantage from intercropping over sole crops. Intercropped safflower had a higher relative crowding coefficient (RCC) than intercropped faba bean, indicating that safflower was more competitive than faba bean in intercropping systems. From this study, it is inferred that intercropping (safflower and faba bean) with integrated use of the reduced chemical and biofertilizers may give better overall yield and income than sole cropping of each crop species.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


2021 ◽  
Vol 42 (4) ◽  
pp. 1053-1061
Author(s):  
M. Kumar ◽  
◽  
S. Mitra ◽  
A. Bera ◽  
M.R. Naik ◽  
...  

Aim: Assessment of energy input output relationship, greenhouse gases emission and carbon footprint of diversified jute-rice cropping systems under different nutrients and crop residue management practices. Methodology: The inventory was prepared for all inputs required for crop cultivation and outputs of crops in cropping systems. These inputs and outputs were converted into energy by multiplying with energy equivalent coefficient and CO2 emission coefficient following standard procedure. Results: Jute-rice-baby corn cropping system recorded significantly higher net energy (324 GJ ha-1) and energy use efficiency (8.02). Among different nutrient and crop management (NCRM) practices, significantly higher energy output (336.9 GJ ha-1) and net energy (291.4 GJ ha-1) recorded 100% NPK with crop residue. The highest carbon footprint recorded with rice-rice (0.44 kg COe kg-1 economic yield) and the lowestwith jute-rice-pea (0.29 kg COe kg-1 economic yield) cropping system. Among different NCRM practices, higher carbon footprint was (0.38 kg COe kg-1 economic yield) recorded with 100% NPK with crop residue. Interpretation: The energy efficient and low input required cropping systems which include legume crops like garden pea and mungbean should be considered for cultivation for diversifying the existing rice-rice cropping system in Eastern India.


2020 ◽  
Vol 22 (2) ◽  
pp. 1-10
Author(s):  
MI Nazrul

The study was conducted at the farmer’s field in Sylhet under AEZ 20 during three consecutive years 2016-17, 2017-18 and 2018-19 to determine the productivity and profitability of cropping patterns viz. IP: improved pattern (Mustard-T. Aus-T. Aman rice) by introducing high yielding varieties and improved management practices and FP: farmer’s pattern (Fallow-T. Aus-T. Aman rice). The experiment was laid out in randomized complete block design with six dispersed replications. Results showed that the improved pattern with management practices provided 6.88 and 22.84 % higher grain yield of T. Aus and T. Aman rice, respectively; also contributed higher mean rice equivalent yield (9.44 t ha-1) compared to farmer’s pattern.Sustainable yield index (0.36), production efficiency (39.75 kg ha-1day-1), and land use efficiency (75.98 %) were maximum in Mustard-T. Aus- T. Aman rice cropping system on an average. Similarly, the highest mean gross margin (Tk.1,12,425 ha-1) with benefit cost ratio (2.13) was obtained from improved pattern. Three years results revealed that 24% extra cost provides an ample scope of considerable improvement of the productivity with the inclusion of Mustard before T. Aus rice in improved pattern. Bangladesh Agron. J. 2019, 22(2): 1-10


Sign in / Sign up

Export Citation Format

Share Document