Modelling Nutrient Dynamics and Maize Yields under Different Cropping Systems and Organic Amendments Using APSIM in Central Kenya

2018 ◽  
Vol 24 (3) ◽  
pp. 1-16
Author(s):  
O. H. Ndukhu ◽  
G. R. Wahome
Author(s):  
Salifou Traoré ◽  
Pauline Ouédraogo ◽  
Philippe Bayen ◽  
Babou André Bationo ◽  
Nathan Lee ◽  
...  

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Terence Epule Epule ◽  
Driss Dhiba ◽  
Daniel Etongo ◽  
Changhui Peng ◽  
Laurent Lepage

AbstractIn sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.


2020 ◽  
Vol 27 (25) ◽  
pp. 31933-31945 ◽  
Author(s):  
Fenglian Lv ◽  
Xueyun Yang ◽  
Huanhuan Xu ◽  
Asif Khan ◽  
Shulan Zhang ◽  
...  

2009 ◽  
Vol 45 (1) ◽  
pp. 47-59 ◽  
Author(s):  
JAYNE MUGWE ◽  
DANIEL MUGENDI ◽  
JAMES KUNGU ◽  
MONICAH-MUCHERU MUNA

SUMMARYThis study investigated the feasibility of using sole organics or a combination of organics with inorganic fertilizer to improve maize production in on-station and on-farm experiments in central Kenya. In the on-station experiment, combined application of Calliandra calothyrsus, Leucaena trichandra and Tithonia diversifolia at 30 kg N ha−1 plus inorganic fertilizer (30 kg N ha−1) consistently gave significantly higher maize grain yields than the recommended rate of inorganic fertilizer (60 kg N ha−1). Sole application of calliandra, leucaena and tithonia also increased maize yields more than the recommended rate of inorganic fertilizer. In the on-farm experiment, calliandra, leucaena, tithonia and cattle manure either alone or combined with inorganic fertilizer increased maize yields with a similar magnitude to that of inorganic fertilizer. These organic resources could therefore be used to supplement inorganic fertilizer as a whole or in part. There was a yield gap between on-station and on-farm trials with on-station yields having, on average, 65% greater yields than the on-farm yields. There is therefore potential for increasing yields at the farm level by closing the yield gap.


2015 ◽  
Vol 48 (4) ◽  
pp. 13-20
Author(s):  
A. Ahmad ◽  
Z.I. Ahmed ◽  
M. Shehzad ◽  
I. Aziz ◽  
K.S. Khan ◽  
...  

Abstract Water scarcity and land degradation are emerging threats to global food production. The dry land regions of world are affected by climate change to a greater extent and facing food insecurity. The current pattern of food production has been estimated to be inadequate to meet demands of growing population and required around 38% increase to meet world`s food demands by 2025. Food insecurity in erosion hit dry land regions of Pakistan also demands development of resource-efficient cropping systems to meet the food needs of population growing. The research studies involved different cropping patterns such as fallow-wheat, mungbean-wheat, sorghum-wheat, fallow-lentil, mungbean-lentil, sorghum-lentil, fallow-barley, mungbean-barley and sorghum-barley. The organic amendments involved farmyard manure, NPK, poultry manure, compost and inoculation by phosphorus solubilizing microbes. The effect of cropping systems and soil amendments were evaluated at field scale in terms of water use efficiency measured in terms of economic terms. The results of the studies revealed that double cropping (mungbean-lentil and mungbean-barley) was feasible option in the dryland regions of Pakistan if integrated with the use of poultry manure as alternate environmental-friendly strategy to cut down the use of mineral fertilizers and eliminate summer fallowing.


2017 ◽  
Vol 27 (4) ◽  
pp. 428-434 ◽  
Author(s):  
NU Mahamood ◽  
Z Ferdous ◽  
M Anwar ◽  
R Ali ◽  
M Sultana

Unbalanced use of chemical fertilizer is a problem in the intensive cropping systems on the Northern part of Bangladesh. Proper nutrient management is essential to maximize maize production and sustain agricultural production while minimizing negative impacts on the soil fertility. The aim of the present study was to investigate nutrient dynamics, maize yields and soil fertility in response to balanced fertilization. A field experiment (2009–2010) was conducted at FSRD site Lahirirhat, OFRD, Rangpur during rabi season 2009-2010 to evaluate Maximizing maize production through nutrient management. Five treatments viz.T1= N300P50K150S30, T2=P50K150S30, T3= N300K150S30, T4= N300P50S30 and T5= N300P50K150were evaluated for this purpose. The result indicated that the highest grain yield (8.37 t/ha) was found from T1= N300P50K150S30 treatment. The lowest grain yield (7.33 t/ha) was obtained from T2=P50K150S30 treatment. The gross return (Tk.100107/ha) and gross margin (Tk.44951/ha) was higher with T1 and T3 treated plot. It may be concluded that proper nutrient management may be the good alternatives for maximizing maize yield and management of soil health at Rangpur region in Bangladesh.Progressive Agriculture 27 (4): 428-434, 2016


Sign in / Sign up

Export Citation Format

Share Document