Effect of livestock manure on soil microbial and nutrient dynamics in Zaï cropping systems of the Sahel

Author(s):  
Salifou Traoré ◽  
Pauline Ouédraogo ◽  
Philippe Bayen ◽  
Babou André Bationo ◽  
Nathan Lee ◽  
...  
Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


2021 ◽  
Vol 61 (7) ◽  
pp. 690
Author(s):  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
Mateus M. Carriero ◽  
Ricardo L. M. Sousa ◽  
Kelly C. Santos ◽  
...  

Context Plant bioactive compounds such as condensed tannins (CT) are seen as an alternative to rumen chemical modulators to mitigate rumen methanogenesis in livestock; however, the presence of CT in ruminant faeces also produces a series of changes in soil microbiomes. Little is known about these effects on soil nutrient dynamics. Therefore, whether CT affect the decomposition process of faecal organic matter, delaying it and consequently increasing soil carbon and nitrogen (N) sequestration, merits study. Aims Our study investigated the effects of a diet rich in CT on bovine faecal composition and on subsequent dynamics of a soil microbial population. Methods Faeces were analysed from cattle fed the following diets: control (no CT), 1.25% CT, 2.5% CT. In a greenhouse pot experiment over a period of 60 days, faeces from the three dietary treatments were applied to soil and the soil microbial populations were measured against a control with no faeces applied. Key results The presence of CT increased the excretion of faecal N and of neutral and acid detergent fibres and lignin, and the higher rate of CT reduced the rate of soil organic matter decomposition. Treatments with dietary CT resulted in greater total numbers of bacteria in the soil than in the no-faeces control and stimulated numbers of Actinobacteria, Proteobacteria (α-Proteobacteria) and Firmicutes. Conclusions The study showed that CT alter N recycling and other nutrient inputs in a soil–animal ecosystem by increasing faecal N inputs, delaying organic matter breakdown, and changing soil microbial dynamics. Implications The presence of CT in ruminant diets can be beneficial to the soil environment. Sustainable management practices should be encouraged by providing ruminants with feed including high-CT legumes in silvopastoral systems.


2016 ◽  
Author(s):  
Marshall D. McDaniel ◽  
A. Stuart Grandy

Abstract. Agriculture-driven declines in plant biodiversity reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity (by rotating crops) can partially reverse these trends and enhance microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W.K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a three-year rotation cycle, but all soils were sampled under corn to isolate historical rotation effects from current crop effects. Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28–112 % and N by 18–58 % compared to monoculture corn. Rotations increased potential C mineralization by as much as 64 %, and potential N mineralization by 62 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the microbial community, assessed with community-level physiological profiling, showed that microbial communities in monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems, relatively small increases in plant biodiversity have a large impact on microbial community size and function.


2021 ◽  
Vol 49 (4) ◽  
pp. 12532
Author(s):  
Ali I. MALLANO ◽  
Xianli ZHAO ◽  
Yanling SUN ◽  
Guangpin JIANG ◽  
Huang CHAO

Continuous cropping systems are the leading cause of decreased soil biological environments in terms of unstable microbial population and diversity index. Nonetheless, their responses to consecutive peanut monocropping cycles have not been thoroughly investigated. In this study, the structure and abundance of microbial communities were characterized using pyrosequencing-based approach in peanut monocropping cycles for three consecutive years. The results showed that continuous peanut cultivation led to a substantial decrease in soil microbial abundance and diversity from initial cropping cycle (T1) to later cropping cycle (T3). Peanut rhizosphere soil had Actinobacteria, Protobacteria, and Gemmatimonadetes as the major bacterial phyla. Ascomycota, Basidiomycota were the major fungal phylum, while Crenarchaeota and Euryarchaeota were the most dominant phyla of archaea. Several bacterial, fungal and archaeal taxa were significantly changed in abundance under continuous peanut cultivation. Bacterial orders, Actinomycetales, Rhodospirillales and Sphingomonadales showed decreasing trends from T1>T2>T3. While, pathogenic fungi Phoma was increased and beneficial fungal taxa Glomeraceae decreased under continuous monocropping. Moreover, Archaeal order Nitrososphaerales observed less abundant in first two cycles (T1&T2), however, it increased in third cycle (T3), whereas, Thermoplasmata exhibit decreased trends throughout consecutive monocropping. Taken together, we have shown the taxonomic profiles of peanut rhizosphere communities that were affected by continuous peanut monocropping. The results obtained from this study pave ways towards a better understanding of the peanut rhizosphere soil microbial communities in response to continuous cropping cycles, which could be used as bioindicator to monitor soil quality, plant health and land management practices.


2006 ◽  
Vol 38 (9) ◽  
pp. 2843-2851 ◽  
Author(s):  
K EDWARDS ◽  
J MCCULLOCH ◽  
G PETERKERSHAW ◽  
R JEFFERIES

2006 ◽  
Vol 21 (4) ◽  
pp. 245-252 ◽  
Author(s):  
Jason L. De Bruin ◽  
Nicholas R. Jordan ◽  
Paul M. Porter ◽  
Sheri C. Huerd

AbstractIntegration of rye (Secale cereale L.) cover crops into the corn (Zea mays L.) soybean [(Glycine max (L.) Merr.] rotation of the upper Midwest USA can provide many agronomic and agroecological benefits. Integration is made difficult by short growing seasons, but may be facilitated by management of key agroecological interactions such as those between rye and soil microbiota. Rye growth was measured and colonization by arbuscular-mycorrhizal fungi (AMF) was determined in greenhouse experiments using soils from seven different management systems from a long-term cropping-systems experiment in southwest Minnesota. Microbial effects on rye growth were not evident before vernalization, but at final harvest (4 weeks after vernalization) soil microbial populations reduced rye shoot and root growth, relative to a pasteurized control inoculum. At final harvest, shoot biomass in 2-year rotations was 17% greater than 4-year rotations, indicating that microbial populations selected for by 4-year rotations may be more deleterious or pathogenic than those selected for by 2-year rotations. Growth of three rye cultivars was examined in all inocula; cultivars differed in their mean response to soil microbiota and their ability to host AMF. These findings suggest that management factors affect interactions between rye and soil microbiota resulting in altered rye growth.


2008 ◽  
Vol 39 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Bodovololona Rabary ◽  
Saidou Sall ◽  
Philippe Letourmy ◽  
Olivier Husson ◽  
Eliane Ralambofetra ◽  
...  

2011 ◽  
Vol 101 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Robert P. Larkin ◽  
C. Wayne Honeycutt ◽  
Timothy S. Griffin ◽  
O. Modesto Olanya ◽  
John M. Halloran ◽  
...  

Four different potato cropping systems, designed to address specific management goals of soil conservation, soil improvement, disease suppression, and a status quo standard rotation control, were evaluated for their effects on soilborne diseases of potato and soil microbial community characteristics. The status quo system (SQ) consisted of barley underseeded with red clover followed by potato (2-year). The soil-conserving system (SC) featured an additional year of forage grass and reduced tillage (3-year, barley/timothy–timothy–potato). The soil-improving system (SI) added yearly compost amendments to the SC rotation, and the disease-suppressive system (DS) featured diverse crops with known disease-suppressive capability (3-year, mustard/rapeseed–sudangrass/rye–potato). Each system was also compared with a continuous potato control (PP) and evaluated under both irrigated and nonirrigated conditions. Data collected over three potato seasons following full rotation cycles demonstrated that all rotations reduced stem canker (10 to 50%) relative to PP. The SQ, SC, and DS systems reduced black scurf (18 to 58%) relative to PP; SI reduced scurf under nonirrigated but not irrigated conditions; and scurf was lower in DS than all other systems. The SQ, SC, and DS systems also reduced common scab (15 to 45%), and scab was lower in DS than all other systems. Irrigation increased black scurf and common scab but also resulted in higher yields for most rotations. SI produced the highest yields under nonirrigated conditions, and DS produced high yields and low disease under both irrigation regimes. Each cropping system resulted in distinctive changes in soil microbial community characteristics as represented by microbial populations, substrate utilization, and fatty acid methyl-ester (FAME) profiles. SI tended to increase soil moisture, microbial populations, and activity, as well result in higher proportions of monounsaturated FAMEs and the FAME biomarker for mycorrhizae (16:1 ω6c) relative to most other rotations. DS resulted in moderate microbial populations and activity but higher substrate richness and diversity in substrate utilization profiles. DS also resulted in relatively higher proportions of FAME biomarkers for fungi (18:2 ω6c), actinomycetes, and gram-positive bacteria than most other systems, whereas PP resulted in the lowest microbial populations and activity; substrate richness and diversity; proportions of monounsaturated and polyunsaturated FAME classes; and fungal, mycorrhizae, and actinomycete FAME biomarkers of all cropping systems. Overall, soil water, soil quality, and soilborne diseases were all important factors affecting productivity, and cropping systems addressing these constraints improved production. Cropping system approaches will need to balance these factors to achieve sustainable production and disease management.


Sign in / Sign up

Export Citation Format

Share Document