growing season precipitation
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Enzai Du ◽  
Yang Tang

Climate change is exerting profound impacts on the structure and function of global boreal forest. Compared with their northern counterparts, trees growing at the southern boreal forest and the temperate-boreal forest ecotone likely show distinct responses to climate change. Based on annual basal areal increment (BAI) of Dahurian larch (Larix gmelinii Rupr.) plantations with similar ages, tree densities and soil nutrient conditions, we investigated the tree growth responses to inter-annual climate variations at an Asian temperate-boreal forest ecotone and nearby boreal sites in northeast China. Annual BAI changed nonlinearly with cambial age in the form of a lognormal curve. The maximum annual BAI showed no significant difference between the two bioregions, while annual BAI peaked at an elder age at the boreal-temperate forest ecotone. After eliminating the age associated trend, conditional regression analyses indicate that residual BAI at the boreal sites increased significantly with higher growing-season mean nighttime minimum temperature and non-growing-season precipitation, but decreased significantly with higher growing-season mean daytime maximum temperature during the past three decades (1985–2015). In contrast, residual BAI at the boreal-temperate forest ecotone only showed a positive and weak response to inter-annual variations of growing-season precipitation. These findings suggest distinct effects of inter-annual climate variation on the growth of boreal trees at the temperate-boreal forest ecotone in comparison to the southern boreal regions, and highlight future efforts to elucidate the key factors that regulate the growth ofthe southernmost boreal trees.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1150
Author(s):  
Emma Sumner ◽  
Susanna Venn

Climate change is expected to lead to changes to the amount, frequency, intensity, and timing of precipitation and subsequent water supply and its availability to plants in mountain regions worldwide. This is likely to affect plant growth and physiological performance, with subsequent effects to the functioning of many important high-elevation ecosystems. We conducted a quantitative systematic review and meta-analysis of the effects of altered water supply on plants from high elevation ecosystems. We found a clear negative response of plants to decreases in water supply (mean Hedges’ g = −0.75, 95% confidence intervals: −1.09 to −0.41), and a neutral response to increases in water supply (mean Hedges’ g = 0.10, 95% confidence intervals: 0.43 to 0.62). Responses to decreases in water supply appear to be related to the magnitude of change in water supply, plant growth form, and to the measured response attribute. Changes to precipitation and water supply are likely to have important consequences for plant growth in high elevation ecosystems, with vegetation change more likely be triggered by reductions than increases in growing season precipitation. High elevation ecosystems that experience future reductions in growing-season precipitation are likely to exhibit plant responses such as reduced growth and higher allocation of carbohydrates to roots.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 550
Author(s):  
Terence Epule Epule

In most parts of sub-Saharan Africa, precipitation is impacted by climate change. In some countries like Cameroon, it is still not clear how maize, millet and rice will respond to changes in growing season precipitation. This work examines the exposure, sensitivity, and adaptive capacity of the above crops to droughts at both the national and sub-national scale. Crop yield data were culled from FAOSTAT while growing season precipitation data were culled from the database of UNDP/Oxford University and the climate portal of the World Bank. Adaptive capacity proxies (literacy, and poverty rate) were collected from KNOEMA and the African Development Bank. The analysis was performed using the vulnerability index equation. Nationally, millet has the lowest vulnerability and rice has the highest. At the sub-national scale, northern maize has the highest vulnerability followed by western highland rice. It is observed that when scales change, the crops that are vulnerable also change. However, at both levels vulnerability has an inverse relationship with adaptive capacity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252335
Author(s):  
Terence Epule Epule ◽  
Abdelghani Chehbouni ◽  
Driss Dhiba ◽  
Daniel Etongo ◽  
Fatima Driouech ◽  
...  

In sub-Saharan Africa growing season precipitation is affected by climate change. Due to this, in Cameroon, it is uncertain how some crops are vulnerable to growing season precipitation. Here, an assessment of the vulnerability of maize, millet, and rice to growing season precipitation is carried out at a national scale and validated at four sub-national scales/sites. The data collected were historical yield, precipitation, and adaptive capacity data for the period 1961–2019 for the national scale analysis and 1991–2016 for the sub-national scale analysis. The crop yield data were collected for maize, millet, and rice from FAOSTAT and the global yield gap atlas to assess the sensitivity both nationally and sub-nationally. Historical data on mean crop growing season and mean annul precipitation were collected from a collaborative database of UNDP/Oxford University and the climate portal of the World Bank to assess the exposure both nationally and sub-nationally. To assess adaptive capacity, literacy, and poverty rate proxies for both the national and regional scales were collected from KNOEMA and the African Development Bank. These data were analyzed using a vulnerability index that is based on sensitivity, exposure, and adaptive capacity. The national scale results show that millet has the lowest vulnerability index while rice has the highest. An inverse relationship between vulnerability and adaptive capacity is observed. Rice has the lowest adaptive capacity and the highest vulnerability index. Sub-nationally, this work has shown that northern maize is the most vulnerable crop followed by western highland rice. This work underscores the fact that at different scales, crops are differentially vulnerable due to variations in precipitation, temperature, soils, access to farm inputs, exposure to crop pest and variations in literacy and poverty rates. Therefore, caution should be taken when transitioning from one scale to another to avoid generalization. Despite these differences, in the sub-national scale, western highland rice is observed as the second most vulnerable crop, an observation similar to the national scale observation.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Terence Epule Epule ◽  
Driss Dhiba ◽  
Daniel Etongo ◽  
Changhui Peng ◽  
Laurent Lepage

AbstractIn sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10836
Author(s):  
Kerri L. Steenwerth ◽  
Ian Morelan ◽  
Ruby Stahel ◽  
Rosa Figueroa-Balderas ◽  
Dario Cantu ◽  
...  

Background The geographic and temporal distributions of bacterial and fungal populations are poorly understood within the same wine grape cultivar. In this work, we describe the microbial composition from ‘Pinot noir’ must with respect to vintage, growing region, climate, and must chemistry across the states of California and Oregon, USA. Materials and Methods We sampled ‘Pinot noir’ clone 667 clusters from 15 vineyards existing in a latitudinal gradient spanning nearly 1,200 km in California and Oregon for two vintages (2016 and 2017). Regions included five American Viticultural Areas (AVA). In order from southern California to Oregon, these AVAs were Santa Barbara, Monterey, Sonoma, Mendocino, and Willamette Valley. Uninoculated grape musts were subjected to 16S rRNA gene and ITS-1 amplicon sequencing to assess composition of microbial communities. We also measured grape maturity metrics. Finally, to describe regions by precipitation and growing degree days, we queried the Parameter-elevation Regressions on Independent Slopes Model (PRISM) spatial climate dataset. Results Most of the dominant bacterial taxa in must samples were in the family Enterobacteriaceae, notably the lactic acid bacteria or the acetic acid bacteria groups, but some, like the betaproteobacterial genus Massilia, belonged to groups not commonly found in grape musts. Fungal communities were dominated by Hanseniaspora uvarum (Saccharomycetaceae). We detected relationships between covariates (e.g., vintage, precipitation during the growing season, pH, titratable acidity, and total soluble solids) and bacterial genera Gluconobacter and Tatumella in the family Enterobacteraceae, Sphingomonas (Sphingomonodaceae), Lactobacillus (Lactobacillaceae), and Massilia (Oxalobacteraceae), as well as fungal genera in Hanseniaspora, Kazachstania, Lachancea, Torulaspora in the family Saccharomycetaceae, as well as Alternaria (Pleosporaceae), Erysiphe (Erysiphaceae), and Udeniomyces (Cystofilobasidiaceae). Fungal community distances were significantly correlated with geographic distances, but this was not observed for bacterial communities. Climate varied across regions and vintages, with growing season precipitation ranging from 11 mm to 285 mm and growing degree days ranging from 1,245 to 1,846. Discussion We determined that (1) bacterial beta diversity is structured by growing season precipitation, (2) fungal beta diversity reflects growing season precipitation and growing degree days, and (3) microbial differential abundances of specific genera vary with vintage, growing season precipitation, and fruit maturity metrics. Further, the correlation between fungal community dissimilarities and geographic distance suggests dispersal limitation and the vineyard as a source for abundant fungal taxa. Contrasting this observation, the lack of correlation between bacterial community dissimilarity and geographic distance suggests that environmental filtering is shaping these communities.


2020 ◽  
Vol 12 (16) ◽  
pp. 2569
Author(s):  
Mei Yu ◽  
Qiong Gao

Temperate forests and grasslands carry key ecosystem functions and provide essential services. Remote-sensing derived greenness has been widely used to assess the response of ecosystem function to climate and land-cover changes. Although reforestation and grassland restoration have been proposed to enhance the regional greenness in Northern China, the independent contribution of climate without the interference of land-cover change at meso and large scales has rarely been explored. To separate the impacts of climate change on vegetation greenness from those of land-cover/use change, we identified large patches of forests and grasslands in Northern China without land-cover/use changes in 2001–2015 and derived their greenness using MODIS enhanced vegetation index (EVI). We found that most deciduous-broadleaved forest patches showed greening, and the significant slope of the annual mean and maximum EVI are 3.97 ± 0.062 × 10−3 and 4.8 ± 0.116 × 10−3 yr−1, respectively. On the contrary, grassland patches showed great spatial heterogeneity and only those in the east showed greening. The partial correlation analysis between EVI and climate showed that the greening of grassland patches is primarily supported by the increased growing-season precipitation with mean significant coefficient of 0.72 ± 0.01. While wet-year (0.57 ± 0.01) and nongrowing-season precipitation (0.68 ± 0.01) significantly benefit greening of deciduous-broadleaved forests, the altered temperature seasonality modulates their greening spatial-heterogeneously. The increased growing-season minimum temperature might lengthen the growing season and contribute to the greening for the temperature-limited north as shown by positive partial correlation coefficient of 0.66 ± 0.01, but might elevate respiration and reduce greening of the forests in the south as shown by negative coefficient of −0.70 ± 0.01. Daytime warming in growing season is found to favor the drought-tolerant oak dominated forest in the south due to enhanced photosynthesis, but may not favor the forests dominated by less-drought-tolerant birch in the north due to potential water stress. Therefore, grassland greening was essentially promoted by the growing-season precipitation, however, in addition to being driven by precipitation, greening of deciduous forests was regulated spatial-heterogeneously by asymmetrical diurnal and seasonal warming which could be attributed to species composition.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Paul A Beck ◽  
Matthew R Beck ◽  
Stacey A Gunter ◽  
Jon T Biermacher ◽  
Robert L Gillen

Abstract Stocking rate is a fundamental management factor that has major impacts on animal performance, profitability, and long-term sustainability of native range ecosystems. This research was conducted to determine the effects of stocking rate on performance and economics of growing steers grazing a mixed-grass prairie on a rolling upland red shale ecological site at the Marvin Klemme Range Research Station (35° 25′ N 99° 3′ W). The recommended sustainable stocking rate at this location is suggested to be 25 animal unit days (AUD)/ha. Steers [n = 836, initial body weight (BW) ± SD = 216 ± 11.7 kg] grazed at seven stocking rates ranging from 4.13 ha/steer to 1.83 ha/steer over a 7-yr period, from 1990 to 1996, with year considered the random replication. During the experimental period, overall climatic conditions were favorable for forage production with average growing season precipitation of 118% of the long-term average over the 7-yr experiment, and only 1 yr (1994 with only 57% of the long-term average) with growing season precipitation substantially less than the long-term average. Over the entire summer grazing season, average daily gain (ADG) decreased linearly (P < 0.01) with increasing stocking rate, such that for each additional hectare available per steer ADG increased by 0.05 kg/d (R2 = 0.88). Contrary to ADG, BW gain per hectare over the grazing season increased linearly (P < 0.01) with increasing stocking rate, as stocking rate increased from 4.13 ha/steer to 1.83 ha/steer BW gain per hectare doubled from 33.1 kg/ha to 66.8 kg/ha, respectively. With land costs included in the economic analysis, net return per hectare increased linearly (P < 0.01) from $13 [U.S. Dollars [USD]) at the 4.13 ha/steer to $52/ha at the 1.83 ha/steer. For each additional hectare per steer, net return was reduced by $15.80 (USD)/steer and $15.70 (USD)/ha. In favorable climatic conditions, such as during this 7-yr experiment, economically optimal stocking rates can be more than doubled compared with the stocking rate recommended by the United States Department of Agriculture (USDA) Soil Conservation Service. Increasing stocking rates decrease individual animal performance but maximize BW gain per hectare, which leads to the increasing economic returns observed. Research is needed to determine the long-term implications of these stocking rates during unfavorable growing conditions and setting stocking rates based on seasonal weather patterns and extended weather outlook predictions.


2020 ◽  
Vol 102 (3) ◽  
pp. 317-330 ◽  
Author(s):  
Jayram Pandey ◽  
Shalik Ram Sigdel ◽  
Xiaoming Lu ◽  
Franco Salerno ◽  
Binod Dawadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document