scholarly journals Yield maximization of maize through nutrient management

2017 ◽  
Vol 27 (4) ◽  
pp. 428-434 ◽  
Author(s):  
NU Mahamood ◽  
Z Ferdous ◽  
M Anwar ◽  
R Ali ◽  
M Sultana

Unbalanced use of chemical fertilizer is a problem in the intensive cropping systems on the Northern part of Bangladesh. Proper nutrient management is essential to maximize maize production and sustain agricultural production while minimizing negative impacts on the soil fertility. The aim of the present study was to investigate nutrient dynamics, maize yields and soil fertility in response to balanced fertilization. A field experiment (2009–2010) was conducted at FSRD site Lahirirhat, OFRD, Rangpur during rabi season 2009-2010 to evaluate Maximizing maize production through nutrient management. Five treatments viz.T1= N300P50K150S30, T2=P50K150S30, T3= N300K150S30, T4= N300P50S30 and T5= N300P50K150were evaluated for this purpose. The result indicated that the highest grain yield (8.37 t/ha) was found from T1= N300P50K150S30 treatment. The lowest grain yield (7.33 t/ha) was obtained from T2=P50K150S30 treatment. The gross return (Tk.100107/ha) and gross margin (Tk.44951/ha) was higher with T1 and T3 treated plot. It may be concluded that proper nutrient management may be the good alternatives for maximizing maize yield and management of soil health at Rangpur region in Bangladesh.Progressive Agriculture 27 (4): 428-434, 2016

2006 ◽  
Vol 42 (4) ◽  
pp. 441-457 ◽  
Author(s):  
F. K. AKINNIFESI ◽  
W. MAKUMBA ◽  
F. R. KWESIGA

Maize production in Malawi is limited by high costs and sub-optimal use of chemical fertilizers under continuous cultivation. A long-term gliricidia/maize trial was undertaken on a Ferric Lixisol from 1991/92 to 2001/02. The purpose of the study was to assess the performance of a gliricidia/maize intercropping system as a low-input soil fertility replenishment option in southern Malawi. The experiment was a 2 × 3 × 3 factorial design with three replications. Treatments included two maize cropping systems (with and without gliricidia trees), and three rates of inorganic N fertilizer (0, 24 and 48 N kg ha−1 representing 0, 25 and 50% of the national recommended N rate), and three rates of P fertilizer application (0, 20 and 40 P ha−1 representing 0, 50 and 100% of the recommended rate). No effect of P was detected on yield early in the trial, and this treatment was discontinued. The gliricidia pruning biomass did not decline after 10 years of intensive pruning, with strong correlation between tree biomass production and years after establishment (r = 0.91, p < 0.001). Application of gliricidia prunings increased maize yields by three times compared to the yield of unfertilized sole maize. Maize yield from the unfertilized gliricidia pruning treatment was superior to the yield from sole maize supplemented with a quarter or half the recommended N rate. The study confirmed that a gliricidia/maize intercropping system is a promising soil fertility replenishment option in southern Malawi and elsewhere in southern Africa.


2021 ◽  
Vol 122 ◽  
pp. 126169
Author(s):  
Johannes Wilhelmus Maria Pullens ◽  
Peter Sørensen ◽  
Bo Melander ◽  
Jørgen Eivind Olesen

Author(s):  
Arusey Chebet ◽  
Otinga A. Nekesa ◽  
Wilson Ng’etich ◽  
Ruth Njoroge ◽  
Roland W. Scholz ◽  
...  

The objective of this study was to evaluate the effects of site-specific fertilizer recommendations on maize yield using the transdisciplinary (TD) process. 144 farmers participated in the study for the two seasons. Experiments were laid on the farmers’ fields at four sites (Kapyemit, Kipsomba, Ngenyilel and Ziwa, in Uasin Gishu County) using Randomized Complete Block Design in a 3 x 2 factorial arrangement. Treatments included farmers who participated in the TD process (TD2) and those who did not (TD1) in using the interventions for soil fertility improvement which were farmer own practices (ST1); farmers who applied government recommendations (ST2), and site-specific fertilizer recommendations (ST3) which was based on soil testing results. The Data collected was the dry weights of maize which were measured at the end of the seasons and subjected to Analysis of Variance using Genstat 14th edition. Means separation was done using Fischer’s unprotected Least Significant Difference.. There was a significant effect on maize yields by soil testing and participation in TD process p = 0.01. The mean maize grain yield for season one was 5.43 ton ha-1 while for season two was 5.73 ton ha-1. Control farmers (TD1) maize grain yield of 5.27 ton ha-1, had a significant difference (p = 0.05) from the yield of participating farmers (TD2) who had 5.96 ton ha-1. Maize grain yield was increased by the application of site specific fertilizer recommendations which gave an overall mean of 6.57 ton ha-1 for season one and 6.56 ton ha-1 for season two. Following (ST3) recommendations and participation in the TD process, improved soil nutrient content thus maize yield increased. We recommend soil testing and consequent site-specific fertilizer recommendations for any initiative in managing soil fertility.


2016 ◽  
Vol 32 (1) ◽  
pp. 87-103 ◽  
Author(s):  
W. Mupangwa ◽  
M. Mutenje ◽  
C. Thierfelder ◽  
I. Nyagumbo

AbstractContinuous conventional tillage coupled with unsystematic cereal/legume rotations has promoted low crop productivity on smallholder farms. A multi-locational study was established in three agro-ecoregions (AEs) of Zimbabwe. The aim of the study was to determine the effect of four tillage systems (conventional plowing, planting basins, rip-line and animal traction direct seeding systems) on maize (Zea mays L.), cowpea [Vigna unguiculata (L.) Walp] and soybean [Glycine max (L.) Merrill] yields, and evaluate the economic performance of the conservation agriculture (CA) systems relative to conventional plowing. Each farmer was a replicate of the trial over the three cropping seasons. In the high (750–1000 mm per annum) and low (450–650 mm) rainfall AEs, conventional practice and CA systems gave similar maize grain yield. Under medium rainfall conditions (500–800 mm) planting basins, rip-line and direct seeding systems gave 547, 548 and 1690 kg ha−1 more maize yield than the conventional practice. In the high and low rainfall AEs, conventional practice and planting basins had the lowest maize production risk. Cowpea yield was 35 and 45% higher in the rip-line and direct seeding than conventional practice. Soybean yield was higher in rip-line (36%) and direct seeding (51%) systems than conventional practice. Direct seeding system gave the highest net benefits in all AEs. A combination of long-term biophysical and socio-economic assessments of the different cropping systems tested in our study is critical in order to fully understand their performance under different AEs of Zimbabwe.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 452
Author(s):  
Teshome Kumela ◽  
Esayas Mendesil ◽  
Bayu Enchalew ◽  
Menale Kassie ◽  
Tadele Tefera

The productivity of maize in Ethiopia has remained lower than the world average because of several biotic and abiotic factors. Stemborers and poor soil fertility are among the main factors that contribute to this poor maize productivity. A novel cropping strategy, such as the use of push-pull technology, is one of the methods known to solve both challenges at once. A push-pull technology targeting the management of maize stemborers was implemented in the Hawassa district of Ethiopia with the ultimate goal of increased food security among smallholder farmers. This study evaluated farmers’ perception of push-pull technology based on their experiences and observations of the demonstration plots that were established on-farm in Dore Bafano, Jara Gelelcha and Lebu Koremo village of the Hawasa district in 2016 and 2017. This study examined farmers’ perception of the importance of push-pull technology in controlling stemborers and improving soil fertility and access to livestock feed. In both cropping seasons, except for Jara Gelelcha, the maize grain yields were significantly higher in the climate-adapted push-pull plots compared to the maize monocrop plots. The majority (89%) of push-pull technology-practising farmers rated the technology better than their maize production methods on attributes such as access to new livestock feed and the control of stemborer damage. As a result, approximately 96% of the interviewed farmers were interested in adopting the technology starting in the upcoming crop season. Awareness through training and effective dissemination strategies should be strengthened among stakeholders and policymakers for the sustainable use and scaling-up of push-pull technology.


2019 ◽  
Vol 35 (3) ◽  
pp. 322-335 ◽  
Author(s):  
W. Mupangwa ◽  
C. Thierfelder ◽  
S. Cheesman ◽  
I. Nyagumbo ◽  
T. Muoni ◽  
...  

AbstractConservation agriculture (CA) and no-till (NT)-based cropping systems could address soil degradation and fertility decline in southern Africa. A multi-location and multi-year experiment was carried out between 2008 and 2014 to assess the effects of different levels of maize residue biomass (0, 2, 4, 6 and 8 t ha−1) and nitrogen (N) fertilizer (0, 30, 90 kg ha−1) on maize performance under no-tillage. In some sites, different (N) fertilizer levels were superimposed to test their effects on maize grain yield and leaf chlorophyll content under different maize residue biomass levels. The different residue levels had no significant effect on maize yield in most growing seasons. Maize residue cover increased grain yield in eight out of 39 site-years across the sites used. However, in some sites, maize yield decreased with increases in residue level in cropping seasons that had average to above average rainfall. At a few sites maize yield increased with increase in residue level. Seasonal rainfall pattern influenced the effect of different residue levels on grain yield at most sites. Nitrogen fertilizer increased maize yield regardless of the residue level applied. This study demonstrates that mulching with maize residues in CA/NT systems results in limited maize yield gains – at least within the first 6 years in different agro-ecological conditions of southern Africa.


2020 ◽  
pp. 1252-1258
Author(s):  
Hudson Carvalho Bianchini ◽  
Douglas Jose Marques

The effects of drought stress on maize have been extensively reported in tropical and subtropical areas, including morphological changes in plants and reductions in the grain yield. The development of sustainable alternatives that help mitigate the negative impacts of water stress is indispensable for the development of agricultural crops. This study evaluates the effect of silicon fertilization in two irrigation blades, on gas exchange, putrescine content, quantification of Ca, K, Zn, and Fe by neutron activation and grain yield in two maize cultivars, tolerant and sensitive to drought stress. Two experiments were conducted, the first using BR-1010 (sensitive to drought stress) and the second using DKB-390 (tolerant to drought stress), in 19 dm-3 pots with one plant in each pot. The experiment was organized in randomized blocks, in a factorial scheme, combining two irrigation blades (30 percent and 100 percent of necessary water replacement) and two silicon conditions per pots: control (-Si), and 27g Si (+Si) using calcium silicate (10.5 percent Si) with four replicates. The contents of putrescine, Ca, K, Zn, and Fe, as well as transpiration rate, stomatal conductance, and net photosynthetic contents were quantified. Maize yield was measured at the end of the study. It was concluded that supplementation with Si contributes to a 12 percent increase in yield for BR-1010 (drought sensitive) and 14 percent for DKB-390 (drought tolerant). Si increased the net photosynthetic rate, transpiration rate, and stomatal conductance in DKB-390. The content of putrescine increased in plants submitted to drought stress and can be considered as an indicator of drought stress. The leaf contents of Ca, K, Zn, and Fe varied according to the cultivars and water blade studied.


2019 ◽  
Vol 52 (2) ◽  
pp. 73-78
Author(s):  
Olusegun Raphael Adeyemi ◽  
David Obaloluwa Hosu ◽  
Patience Mojibade Olorunmaiye ◽  
Adeniyi Adebowale Soretire ◽  
Joseph Aremu Adigun ◽  
...  

Abstract Successful cultivation of maize depends largely on efficient weed control, adequate supply of essential nutrients and sufficient soil moisture. Screenhouse and field trials were conducted at the Teaching and Research Farm of the Federal University of Agriculture, Abeokuta, Nigeria during the early and late cropping season of 2013 to evaluate effects of biochar integrated with manual weeding and pre-emergence herbicides on weed control efficiency and productivity of maize. The screenhouse trial was a 6 × 5 factorial experiment fitted into Completely Randomized Design in three replicates. The two factors were biochar: 0, 2, 4, 6, 8 and 10 t ha−1 and weed control methods: weedy check, hoe weeding at 6 Weeks After Sowing (WAS), hoe weeding at 3, 6, and 9 WAS, pre-emergence herbicide application (Codal Gold) at 1.0 and 2.0 kg a.i./ha−1. The field trial was laid out in split-plot arrangement fitted into Randomized Complete Block Design with three replicates. The three main treatments plots on the field consisted of the optimum rates of biochar obtained in the screenhouse (10 t ha−1) compared with 20 t ha−1 and 0 t ha−1 which served as the control. The sub-plots treatments consisted of weed control methods used in the screen house experiment. Data were collected on grain yield and weed dry matter. The result showed that biochar at 10 and 20 t ha−1 in the screenhouse and field trials, respectively, resulted in significantly (P < 0.05) higher grain yield compared with other rates tested. Highest grain yield was obtained in pots hoe weeded thrice at 3, 6 and 9 WAS. Whereas similar grain yield was recorded in plot weeded once at 6 WAS and that hoe weeded at 3, 6 and 9 WAS in the field experiment. Biochar application of 20 t ha−1 gave optimum maize yield. Among the weed control treatments manual weeding either at 6 WAS or at 3, 6 and 9 WAS recorded the highest grain yields. Therefore, incorporation of biochar with either preemergence herbicide or manual hoe weeding would enhance the growth and yield of maize.


2015 ◽  
Vol 7 (12) ◽  
pp. 233 ◽  
Author(s):  
Abdul Rahman Nurudeen ◽  
F. M. Tetteh ◽  
M. Fosu ◽  
G. W. Quansah ◽  
A. S. Osuman

<p>The experiment was conducted to refined profitable NPK fertilizer rate for maize production on <em>Tanchera</em> series (Ferric Lixisol, FAO, 2006) in the Sudan savanna agro-ecological zone of Ghana. RCBD design with four replications was used. Treatments evaluated were N = 0, 40, 80, 120, 160; P = 0, 45, 90 and K = 0, 45, 90 kg/ha. Results showed significant N rate effect on grain yield, benefit cost ratio and gross return (P ≤ 0.01). P and K did not show significant effect among these parameters. Application of nitrogen from 80-120 kg/ha may be recommended for improve grain yield and gross return of maize production on Ferric lixisol. Due to poor nature of soils, application of P and K up to 45 kg/ha may also be recommended for maize production.</p>


2014 ◽  
Vol 32 (2) ◽  
pp. 61 ◽  
Author(s):  
Sofina Nisha ◽  
Surendra Prasad ◽  
Jagdish Bhati

There is evidence that the soil health in Taveuni, Fiji is deteriorating over time threatening livelihoods of taro producers. The present study was conducted to understand the soil nutrient management practices followed by taro farmers in Taveuni. The study revealed that the farmers in Taveuni use various organic and chemical fertilizers and various other soil fertility management practices such as mulching, crop rotation with legumes, yagona and agroforestry. The quantity of nitrogen, phosphorous and potash (NPK) applied to taro crop on different types of soils was meager. The study further revealed that there was imbalanced and insufficient use of chemical fertilizers and organic sources of soil nutrients. The main cause of low use of fertilizers was that the farmers in Taveuni do not know the fertility status of their farms as no soil testing was ever done and majority of them are also not fully aware of various low-cost organic methods of maintaining soil fertility of farms.


Sign in / Sign up

Export Citation Format

Share Document