scholarly journals Cost Analysis of Hydrogen Production for Transport Application

Author(s):  
Deborah A. Udousoro ◽  
Cliff Dansoh

One of the challenges faced in the United Kingdom energy market is the need to supply clean energy at affordable prices. Hydrogen can be used as an energy carrier and has been applied as fuel for automotive engines. Several technologies exist for the production of hydrogen fuel but their acceptance is dependent on the cost and impact on the environment. Steam methane reforming is an established hydrogen production process in the UK. Currently there are 8 fuel cell buses that run on hydrogen fuel but the hydrogen used is produced via steam methane reforming. Production of hydrogen through solar powered electrolysis is a cleaner option but at what economic cost? In this paper, cost analysis is conducted to compare the cost of producing the amount of hydrogen needed to run the RV1 fuel cell buses at Lea Interchange bus garage through steam methane reforming of natural gas to solar powered water electrolysis. From the analysis it was discovered that levelised energy cost of solar powered electrolysis system is 15 times the levelised energy cost of steam methane reforming of natural gas. Thus, the production of hydrogen is not economically feasible through solar powered water electrolysis system.

Author(s):  
G. Tsatsaronis ◽  
A. Boyano ◽  
T. Morosuk ◽  
A. M. Blanco-Marigorta

In this paper, an advanced exergoenvironmental analysis is conducted for a steam methane reforming process for the production of hydrogen. The approach for calculating pollutant formation is generalized and the assumptions required for applying the analysis are discussed in detail. These are the main contributions of this work to the development of exergy-based methods for the analysis of energy-intensive chemical processes. In an advanced exergoenvironmental analysis, the environmental impact associated with the exergy destruction within a component as well as the component-related environmental impact and a component-related pollutant formation are split into unavoidable/avoidable and endogenous/exogenous parts. This splitting improves our understanding of the sources of thermodynamic inefficiencies and their effect to the formation of environmental impacts and pollutants, and facilitates a subsequent improvement of the overall process. Finally, some improvement options developed on the basis of the results of the advanced exergoenvironmental analysis are discussed.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1348
Author(s):  
Philipp Kenkel ◽  
Timo Wassermann ◽  
Edwin Zondervan

Biogas is a significant by-product produced in algae processing and may be used for many different applications, not only as a renewable energy carrier but also as a chemical intermediate in integrated algae-based biorefineries. In this work, the reforming of biogas to H2/CO2 mixtures (referred to as SynFeed) as feed for the direct hydrogenation of CO2 to methanol is investigated. Two conventional processes, namely steam methane and autothermal reforming, with upstream CO2 separation from raw biogas are compared to novel concepts of direct biogas bi- and tri-reforming. In addition, downstream CO2 separation from SynFeed using the commercial Selexol process to produce pure H2 and CO2 is considered. The results show that upstream CO2 separation with subsequent steam methane reforming is the most economic process, costing 142.48 €/tSynFeed, and taking into consideration the revenue from excess hydrogen. Bi-reforming is the most expensive process, with a cost of 413.44 €/tSynFeed, due to the high demand of raw biogas input. Overall, SynFeed from biogas is more economical than SynFeed from CO2 capture and water electrolysis (464 €/tSynFeed), but is slightly more expensive than using natural gas as an input (107 €/SynFeed). Carbon capture using Selexol comes with costs of 22.58–27.19 €/tCO2, where approximately 50% of the costs are derived from the final CO2 compression.


2021 ◽  
Vol 9 ◽  
Author(s):  
Seyedehhoma Ghavam ◽  
Caroline M. Taylor ◽  
Peter Styring

Global demand for both clean energy carriers and agricultural nutrients continues to grow rapidly, alongside increasing quantities of waste globally, interlinked challenges that may be addressed with interlinked solutions. We report on the potential efficiency and Greenhouse Gas (GHG) intensity of several configurations of a new, sustainability-driven ammonia (NH3) production processes to determine whether a waste-based process designed first around carbon dioxide (CO2) capture can compete with other available NH3 technologies. This is assessed via different scenarios: Two hydrogen generating options are paired with four CO2 fates. For either an anaerobic digestion-centered process or a two-stage dark fermentation coupled with anaerobic digestion process, the resultant CO2 may be captured and injected, sold to the marketplace, released directly in the atmosphere, or converted to urea in order to produce a green substitute for synthetic NH3. Modeled yields range from 47 t NH3 when the resultant CO2 is released or captured, or 3.8 t NH3 and 76.5 t urea when the system is designed to produce no unutilized CO2. Among the technologies assessed, NH3 production where CO2 is captured for anaerobic digestion-only is the most efficient for GHG emissions and water consumption, while the two-stage requires less energy on a fertilizer-N basis. GHG emissions for anaerobic digestion-only are approximately 8% lower than the two-stage. The best of the proposed technology configurations consumes about 41% less energy than water electrolysis coupled with Haber-Bosch and approximately 27% lower energy than Steam Methane Reforming (SMR) coupled with Haber-Bosch per kg NH3.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8182
Author(s):  
Jinho Boo ◽  
Eun Hee Ko ◽  
No-Kuk Park ◽  
Changkook Ryu ◽  
Yo-Han Kim ◽  
...  

Although steam methane reforming (CH4 + 2H2O → 4H2 + CO2) is the most commercialized process for producing hydrogen from methane, more than 10 kg of carbon dioxide is emitted to produce 1 kg of hydrogen. Methane pyrolysis (CH4 → 2H2 + C) has attracted much attention as an alternative to steam methane reforming because the co-product of hydrogen is solid carbon. In this study, the simultaneous production of hydrogen and separable solid carbon from methane was experimentally achieved in a bubble column filled with molten potassium chloride. The melt acted as a carbon-separating agent and as a pyrolytic catalyst, and enabled 40 h of continuous running without catalytic deactivation with an apparent activation energy of 277 kJ/mole. The resultant solid was purified by water washing or acid washing, or heating at high temperature to remove salt residues from the carbon. Heating the solid product at 1200 °C produced the highest purity carbon (97.2 at%). The economic feasibility of methane pyrolysis was evaluated by varying key parameters, that is, melt loss, melt price, and carbon revenue. Given a potassium chloride loss of <0.1 kg of salt per kg of produced carbon, the carbon revenue was calculated to be USD > 0.45 per kg of produced carbon. In this case, methane pyrolysis using molten potassium chloride may be comparable to steam methane reforming with carbon capture storage.


Sign in / Sign up

Export Citation Format

Share Document