scholarly journals COMBINED REFRACTION-DIFFRACTION OF NONLINEAR WAVES IN SHALLOW WATER

1984 ◽  
Vol 1 (19) ◽  
pp. 68
Author(s):  
James T. Kirby ◽  
Philip L.F. Liu ◽  
Sung B. Yoon ◽  
Robert A. Dalrymple

The parabolic approximation is developed to study the combined refraction/diffraction of weakly nonlinear shallow water waves. Two methods of approach are taken. In the first method Boussinesq equations are used to derive evolution equations for spectral wave components in a slowly varying two-dimensional domain. The second method modifies the equation of Kadomtsev s Petviashvili to include varying depth in two dimensions. Comparisons are made between present numerical results, experimental data and previous numerical calculations.

1973 ◽  
Vol 58 (3) ◽  
pp. 481-493 ◽  
Author(s):  
S. Leibovich ◽  
J. D. Randall

The interaction of weakly nonlinear waves with slowly varying boundaries is considered. Special emphasis is given to rotating fluids, but the analysis applies with minor modifications to waves in stratified fluids and shallow-water aves. An asymptotic solution of a variant of the Korteweg–de Vries equation with variable coefficients is developed that produces a ‘Green's law’ for the amplification of waves of finite amplitude. For shallow-water waves in water of variable depth, the result predicts wave growth proportional to the $-\frac{1}{3}$ power of the depth.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850017 ◽  
Author(s):  
Aly R. Seadawy

The problem formulations of models for three-dimensional weakly nonlinear shallow water waves regime in a stratified shear flow with a free surface are studied. Traveling wave solutions are generated by deriving the nonlinear higher order of nonlinear evaluation equations for the free surface displacement. We obtain the velocity potential and pressure fluid in the form of traveling wave solutions of the obtained nonlinear evaluation equation. The obtained solutions and the movement role of the waves of the exact solutions are new travelling wave solutions in different and explicit form such as solutions (bright and dark), solitary wave, periodic solitary wave elliptic function solutions of higher-order nonlinear evaluation equation.


2019 ◽  
Vol 35 (07) ◽  
pp. 2050028 ◽  
Author(s):  
Jian-Gen Liu ◽  
Xiao-Jun Yang ◽  
Yi-Ying Feng

With the aid of the planar dynamical systems and invariant algebraic cure, all algebraic traveling wave solutions for two extended (2 + 1)-dimensional Kadomtsev–Petviashvili equations, which can be used to model shallow water waves with weakly nonlinear restoring forces and to describe waves in ferromagnetic media, were obtained. Meanwhile, some new rational solutions are also yielded through an invariant algebraic cure with two different traveling wave transformations for the first time. These results are an effective complement to existing knowledge. It can help us understand the mechanism of shallow water waves more deeply.


Author(s):  
Piotr Rozmej ◽  
Anna Karczewska

AbstractThe authors of the paper “Two-dimensional third-and fifth-order nonlinear evolution equations for shallow water waves with surface tension” Fokou et al. (Nonlinear Dyn 91:1177–1189, 2018) claim that they derived the equation which generalizes the KdV equation to two space dimensions both in first and second order in small parameters. Moreover, they claim to obtain soliton solution to the derived first-order (2+1)-dimensional equation. The equation has been obtained by applying the perturbation method Burde (J Phys A: Math Theor 46:075501, 2013) for small parameters of the same order. The results, if correct, would be significant. In this comment, it is shown that the derivation presented in Fokou et al. (Nonlinear Dyn 91:1177–1189, 2018) is inconsistent because it violates fundamental properties of the velocity potential. Therefore, the results, particularly the new evolution equation and the dynamics that it describes, bear no relation to the problem under consideration.


Author(s):  
Anna Kalogirou ◽  
Onno Bokhove ◽  
David Ham

We consider a comprehensive mathematical and numerical strategy to couple water-wave motion with rigid ship dynamics using variational principles. We present a methodology that applies to three-dimensional potential flow water waves and ship dynamics. For simplicity, in this paper we demonstrate the method for shallow-water waves coupled to buoy motion in two dimensions, the latter being the symmetric motion of a crosssection of a ship. The novelty in the presented model is that it employs a Lagrange multiplier to impose a physical restriction on the water height under the buoy in the form of an inequality constraint. A system of evolution equations can be obtained from the model and consists of the classical shallow-water equations for shallow, incompressible and irrotational waves, and relevant equations for the dynamics of the wave-energy buoy. One of the advantages of the variational approach followed is that, when combined with symplectic integrators, it eliminates any numerical damping and preserves the discrete energy; this is confirmed in our numerical results.


Sign in / Sign up

Export Citation Format

Share Document