scholarly journals Analysis of Plan Irregular Building Supported in Different Soil Stratum

2016 ◽  
Vol 4 (Special Issue) ◽  
pp. 14-19
Author(s):  
P.S. Anil Kumar ◽  
Vinayak Vijapur
Keyword(s):  
2021 ◽  
Vol 36 ◽  
pp. 03014
Author(s):  
I.V. Komissarova ◽  
A.V. Chelovechkova ◽  
N.V. Miroshnichenko

Water-physical properties of soils are a set of soil properties that determine the accumulation, preservation and water transfer in the soil stratum. One of the important indicators of water-physical properties are soil-hydrological constants. These indicators can be used in forecasting yield, calculating the irrigation rate. The determination of soil-hydrological constants is a rather laborious process. In this article, we propose to obtain soil-hydrological constants from the data of the main hydrophysical characteristics. This technique allows to analyze the data and obtain soil-hydrological constants from the data of granulometric composition. The conducted studies have shown that the use of uncontrolled irrigation has led to the transformation of water-physical properties, the content of easily mobile, productive and gravitational moisture has decreased. When modeling the MHC curve, a change in the shape on the graphs can be noted.


2021 ◽  
Vol 634 (1) ◽  
pp. 012116
Author(s):  
Heng Kong ◽  
Fei Guo ◽  
Mi Zhang ◽  
Shenglei Gao ◽  
Kaili Wang

2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Helmy Darjanto ◽  
Masyhur Irsyam ◽  
Sri Prabandiyani Retno

The Spider Net System Footing (SNSF) is a raft foundation system that commonly used in Indonesia. It contains a plate, downward ribs system for reinforcement, and the compacted filled soil. The ribs are in longitudinal and transversal, called as settlement rib and in diagonal direction, named as construction rib. This paper explores the load transfer mechanism along the plate, the ribs, filled soil and the base soil under the footing system. The mechanism is investigated by conducting full scale static load test on SNSF. Strain gauges were installed to monitor the strain increment of each footing elements during loading. 3D numerical analysis was also conducted to verify the experimental results. To analyze the results, Load-Ultimate Ratio Factor (L-URF) was proposed. L-URF was a ratio between ultimate soil bearing capacity of the SNSF and the applied loading at specific element. Higher the L-URF value means higher loading applied at its associate element. Both experimental and numerical results show that at the first stage the loading was fully carried out by the tip of the ribs and transferred to the soil stratum under the footing system. Increasing the loading, the ribs, plate, and filled soil altogether sustain the loading and then transferred to the soil stratum below the footing system. The results also affirm that SNSF generate higher bearing capacity compare with simple shallow footing.  


Sign in / Sign up

Export Citation Format

Share Document