scholarly journals Prediction of Forming Limits of High-Strength Steel Sheets in Stretch Forming Process Including Strain Path Changes

2011 ◽  
Vol 52 (606) ◽  
pp. 821-827
Author(s):  
Atsushi HIRAHARA ◽  
Yutaka FUJII ◽  
Ryutaro HINO ◽  
Fusahito YOSHIDA
2014 ◽  
Vol 939 ◽  
pp. 260-265 ◽  
Author(s):  
Ryutaro Hino ◽  
Satoki Yasuhara ◽  
Yutaka Fujii ◽  
Atsushi Hirahara ◽  
Fusahito Yoshida

Forming limits of several high-strength steel (HSS) sheets under non-proportional deformation paths were examined experimentally and predicted analytically. Forming limit curves (FLCs) for 590MPa, 780MPa and 980MPa grade HSS sheets were obtained by performing stretch forming tests under proportional deformation and two types of non-proportional deformation. The experimental results showed strong path-dependent characteristics of FLCs of HSS sheets. Forming limits of equi-biaxially prestrained HSS sheets became markedly lower compared to the original FLCs under proportional deformation, while forming limits of uniaxially prestrained HSS sheets became partially higher than the original FLCs. It was confirmed that Marciniak-Kuczyński type analysis gave reasonably good predictions of forming limits under non-proportional deformation paths. Especially forming limit predictions of equi-biaxially-prestrained sheets showed good agreement with the corresponding experimental results.


Author(s):  
Xifan Zou ◽  
Shiwei Yan ◽  
Mengcheng Zhou ◽  
Yu Lei ◽  
Shangyu Huang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Wiriyakorn Phanitwong ◽  
Arkarapon Sontamino ◽  
Sutasn Thipprakmas

In recent years, the engineered materials were developed to improve their mechanical properties. A high-strength steel sheet is one of them, developed to serve the requirement of reducing weight of vehicles. Therefore, as a new material, many researches have been carried out to examine the use of sheet metal forming process applied for high-strength steel sheet. However, the feasibility of shaving process applied for it has not been investigated yet. In the present study, this feasibility was revealed by using experiments on two types of high-strength steel sheets: SAPH 440 and SPFH 590Y (JIS). The relationship between shaved surface feature and shearing clearance of high-strength steel sheets corresponded well with those of their conventional metal sheets. However, due to the high ultimate strength of these materials, it was revealed in this present study that there were not any suitable conditions of shaving process that could be applied to achieve the requirements of smooth cut surface overall material thickness.


Author(s):  
Yu Lei ◽  
Shangyu Huang ◽  
Wei Liu ◽  
Shiwei Yan ◽  
Mengcheng Zhou ◽  
...  

2021 ◽  
Vol 877 ◽  
pp. 83-89
Author(s):  
Aeksuwat Nakwattanaset ◽  
Surasak Suranuntchai

The manufacturing industries for automotive parts aim to develop technologies for reducing vehicle weight in order to decrease fuel consumption. However, passive safety function for drivers and passengers must not be impaired or should be even improved. Therefore, advanced high strength steel sheet plays more and more important role in designing automotive components. Nowadays, prediction of formability for sheet metal stamping has high capability more than the past. The major challenge is springback prediction. Moreover, it assists in the tooling design to correctly compensate for springback. Especially in automotive production, springback effects have been generally exhibited distinct after forming process of the high strength steel sheets. The springback effect occurred in the deformed state of metal parts must be taken into account by designing any sheet metal panels. Then, the purpose of the present research is to investigate the springback phenomenon of an automotive part named Reinforcement Rocker RL made from an advanced high strength steel grade JAC780Y, after stamping. In addition, the tools design has been carried out. Finite Element (FE) program known as DYNAFORM (based on LS-DYNA solver), has been applied to analyze and improve the springback effect on such forming part. An anisotropic material model according to type 36 (MAT_036 3-PARAMETER_BARAT) was applied. The results obtained from simulations were compared with required parts in each section. Then, the die surface from compensation in 2nd step forming was modified to use. Finally, the simulation part was verified with the real stamping part. It was found that the finite element simulation showed high capability for prediction and compensation of springback in high strength steel sheets forming.


2021 ◽  
Vol 113 (1-2) ◽  
pp. 59-72
Author(s):  
Yohei Abe ◽  
Ken-ichiro Mori

AbstractTo increase the usage of high-strength steel and aluminium alloy sheets for lightweight automobile body panels, the joinability of sheet combinations including a 780-MPa high-strength steel and an aluminium alloy A5052 sheets by mechanical clinching and self-pierce riveting was investigated for different tool shapes in an experiment. All the sheet combinations except for the two steel sheets by self-pierce riveting, i.e., the two steel sheets, the two aluminium alloy sheets, and the steel-aluminium alloy sheets, were successfully joined by both the joining methods without the gaps among the rivet and the sheets. Then, to show the durability of the joined sheets, the corrosion behaviour and the joint strength of the aged sheets by a salt spray test were measured. The corrosion and the load reduction of the clinched and the riveted two aluminium alloy sheets were little. The corrosion of the clinched two steel sheets without the galvanized layer progressed, and then the load after 1176 h decreased by 85%. In the clinched two galvanized steel sheets, the corrosion progress slowed down by 24%. In the clinched steel and aluminium alloy sheets, the thickness reduction occurred near the minimum thickness of the upper sheet and in the upper surface on the edge of the lower aluminium alloy sheet, whereas the top surface of the upper sheet and the upper surface of the lower sheet were mainly corroded in the riveted joint. The load reduction was caused by the two thickness reductions, i.e., the reduction in the minimum thickness of the upper sheet and the reduction in the flange of the aluminium alloy sheet. Although the load of the clinched steel without the galvanized coating layer and aluminium alloy sheets decreased by about 20%, the use of the galvanized steel sheet brought the decrease by about 11%. It was found that the use of the galvanized steel sheets is effective for the decrease of strength reduction due to corrosion.


Sign in / Sign up

Export Citation Format

Share Document