scholarly journals Design and Development of an Energy Efficient Multimedia Cloud Data Center with Minimal SLA Violation

Author(s):  
Nirmal Kr. Biswas ◽  
Sourav Banerjee ◽  
Utpal Biswas
Author(s):  
Avinab Marahatta ◽  
Sandeep Pirbhulal ◽  
Fa Zhang ◽  
Reza M. Parizi ◽  
Kim-Kwang Raymond Choo ◽  
...  

Author(s):  
Li Mao ◽  
De Yu Qi ◽  
Wei Wei Lin ◽  
Bo Liu ◽  
Ye Da Li

With the rapid growth of energy consumption in global data centers and IT systems, energy optimization has become an important issue to be solved in cloud data center. By introducing heterogeneous energy constraints of heterogeneous physical servers in cloud computing, an energy-efficient resource scheduling model for heterogeneous physical servers based on constraint satisfaction problems is presented. The method of model solving based on resource equivalence optimization is proposed, in which the resources in the same class are pruning treatment when allocating resource so as to reduce the solution space of the resource allocation model and speed up the model solution. Experimental results show that, compared with DynamicPower and MinPM, the proposed algorithm (EqPower) not only improves the performance of resource allocation, but also reduces energy consumption of cloud data center.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chunxia Yin ◽  
Jian Liu ◽  
Shunfu Jin

In recent years, the energy consumption of cloud data centers has continued to increase. A large number of servers run at a low utilization rate, which results in a great waste of power. To save more energy in a cloud data center, we propose an energy-efficient task-scheduling mechanism with switching on/sleep mode of servers in the virtualized cloud data center. The key idea is that when the number of idle VMs reaches a specified threshold, the server with the most idle VMs will be switched to sleep mode after migrating all the running tasks to other servers. From the perspective of the total number of tasks and the number of servers in sleep mode in the system, we establish a two-dimensional Markov chain to analyse the proposed energy-efficient mechanism. By using the method of the matrix-geometric solution, we mathematically estimate the energy consumption and the response performance. Both numerical and simulated experiments show that our proposed energy-efficient mechanism can effectively reduce the energy consumption and guarantee the response performance. Finally, by constructing a cost function, the number of VMs hosted on each server is optimized.


Sign in / Sign up

Export Citation Format

Share Document