multimedia cloud
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2685
Author(s):  
Yanfeng Shi ◽  
Shuo Qiu

In a multimedia cloud computing system, suppose all cloud users outsource their own data sets to the cloud in the encrypted form. Each outsourced set is associated with an access structure such that a valid data user, Bob, with the credentials satisfying the access structure is able to conduct computing over outsourced encrypted set (e.g., decryption or other kinds of computing function). Suppose Bob needs to compute the set intersection over a data owner Alice’s and his own outsourced encrypted sets. Bob’s simple solution is to download Alice’s and Bob’s outsourced encrypted sets, perform set intersection operation, and decrypt the set intersection ciphertexts. A better solution is for Bob to delegate the cloud to calculate the set intersection, without giving the cloud any ability in breaching the secrecy of the sets. To solve this problem, this work introduces a novel primitive called ciphertext-policy attribute-based encryption with outsourced set intersection for multimedia cloud computing. It is the first cryptographic algorithm supporting a fully outsourced encrypted storage, computation delegation, fine-grained authorization security for ciphertext-policy model, without relying on an online trusted authority or data owners, and multi-elements set, simultaneously. We construct a scheme that provably satisfies the desirable security properties, and analyze its efficiency.


2021 ◽  
Vol 27 (3) ◽  
pp. 205-214
Author(s):  
Xin Niu ◽  
Jingjing Jiang

Multimedia is inconvenient to use, difficult to maintain, and redundant in data storage. In order to solve the above problems and apply cloud storage to the integration of university teaching resources, this paper designs a virtualized cloud storage platform for university multimedia classrooms. The platform has many advantages, such as reducing the initial investment in multimedia classrooms, simplifying management tasks, making maximum use of actual resources and easy access to resources. Experiments and analysis show the feasibility and effectiveness of the platform. Aiming at the problems of the single-node repair algorithm of the existing multimedia cloud storage system, the limited domain is large, the codec complexity is high, the disk I/O (Input/Output) cost is high, the storage overhead and the repair bandwidth are unbalanced, and a network coding-based approach is proposed. Multimedia cloud storage. System single node repair algorithm. The algorithm stores the grouped multimedia file data in groups in the system, and performs XOR (exclusive OR) on the data in the group on the GF(2) finite field. When some nodes fail, the new node only needs to be connected. Two to three non-faulty nodes in the same group can accurately repair the data in the failed node. Theoretical analysis and simulation results show that the algorithm can reduce the complexity and repair of the codec, and reduce the disk I/O overhead. In this case, the storage cost of the algorithm is consistent with the storage cost based on the minimum storage regeneration code algorithm, and the repair bandwidth cost is close to the minimum bandwidth regeneration code algorithm.


2021 ◽  
Author(s):  
Mohsen Amini Salehi ◽  
Xiangbo Li

2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Feng Feng ◽  
Xiabing Zhou ◽  
Bin Li ◽  
Qinglei Zhou

A current research trend is to combine multimedia data with artificial intelligence and process them on cloud servers. In this context, ensuring the security of multimedia cloud servers is critical, and the cyber mimic defence (CMD) technology is a promising approach to this end. CMD, which is an innovative active defence technology developed in China, can be applied in many scenarios. However, although the mathematical model is a key component of CMD, a universally acceptable mathematical model for theoretical CMD has not been established yet. In this work, the attack problems and modelling difficulties were extensively examined, and a comprehensive modelling theory and concepts were clarified. By decoupling the model from the input and output of the specific system scene, the modelling difficulties were effectively avoided, and the mathematical expression of the CMD mechanism was enhanced. Furthermore, the process characteristics of the attack behaviour were identified by using a specific mathematical mapping method. Finally, based on the decomposition problem of large prime factors and convolution operations, an intuitive and exclusive CMD mathematical model was proposed. The proposed model could clearly express the CMD mechanism and transform the problems of attack and defence in the CMD domain into corresponding mathematical problems. These aspects were considered to qualitatively assess the CMD security, and it was noted that a high level of security can be realized. Furthermore, the overhead of CMD was analyzed. Moreover, the proposed model can be directly programmed.


Sign in / Sign up

Export Citation Format

Share Document