Development of Molecular Markers for Specific Detection of Xanthomonas campestris pv. incanae

2021 ◽  
Vol 9 (4) ◽  
pp. 287-297
Author(s):  
Mehede Hassan Rubel ◽  
Denison Michael Immanuel Jesse ◽  
Ujjal Kumar Nath ◽  
Jung-Hee Jeong ◽  
Hoy-Taek Kim ◽  
...  
2019 ◽  
Vol 156 (2) ◽  
pp. 491-500
Author(s):  
Yu-ting Zhao ◽  
George W. Sundin ◽  
Xiao-yan Zhang ◽  
Bao-hui Lu ◽  
Jie Gao

1997 ◽  
pp. 649-650
Author(s):  
J. van Doorn ◽  
T.A. Hollinger ◽  
P.M. Boonekamp

2005 ◽  
Vol 95 (5) ◽  
pp. 519-527 ◽  
Author(s):  
Wencai Yang ◽  
Erik J. Sacks ◽  
Melanie L. Lewis Ivey ◽  
Sally A. Miller ◽  
David M. Francis

We used molecular markers to identify quantitative trait loci (QTL) that confer resistance in the field to Xanthomonas campestris pv. vesicatoria race T1, a causal agent of bacterial spot of tomato. An F2 population derived from a cross between Hawaii 7998 (H 7998) and an elite breeding line, Ohio 88119, was used for the initial identification of an association between molecular markers and resistance as measured by bacterial populations in individual plants in the greenhouse. Polymorphism in this cross between a Lycopersicon esculentum donor of resistance and an elite L. esculentum parent was limited. The targeted use of a core set of 148 polymerase chain reaction-based markers that were identified as polymorphic in L. esculentum × L. esculentum crosses resulted in the identification of 37 markers that were polymorphic for the cross of interest. Previous studies using an H 7998 × L. pennellii wide cross implicated three loci, Rx1, Rx2, and Rx3, in the hypersensitive response to T1 strains. Markers that we identified were linked to the Rx1 and Rx3 loci, but no markers were identified in the region of chromosome 1 where Rx2 is located. Single marker-trait analysis suggested that chromosome 5, near the Rx3 locus, contributed to reduced bacterial populations in lines carrying the locus from H 7998. The locus on chromosome 5 explained 25% of the phenotypic variation in bacterial populations developing in infected plants. An advanced backcross population and subsequent inbred backcross lines developed using Ohio 88119 as a recurrent parent were used to confirm QTL associations detected in the F2 population. Markers on chromosome 5 explained 41% of the phenotypic variation for resistance in replicated field trials. In contrast, the Rx1 locus on chromosome 1 did not play a role in resistance to X. campestris pv. vesicatoria race T1 strains as measured by bacterial populations in the greenhouse or symptoms in the field. A locus from H 7998 on chromosome 4 was associated with susceptibility to disease and explained 11% of the total phenotypic variation. Additional variation in resistance was explained by plant maturity (6%), with early maturing families expressing lower levels of resistance, and plant habit (6%), with indeterminate plants displaying more resistance. The markers linked to Rx3 will be useful in selection for resistance in elite × elite crosses.


2009 ◽  
Vol 164 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Dong Suk Park ◽  
Jae Kyung Shim ◽  
Jung Sun Kim ◽  
Chun Keun Lim ◽  
Rosemary Shrestha ◽  
...  

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 453E-453
Author(s):  
N. Mutlu ◽  
D.P. Coyne ◽  
S.O. Park ◽  
J.R. Steadman

Common bacterial blight (CBB) in common bean (Phaseolus vulgaris L.), caused by Xanthomonas campestris pv. phaseoli (Xcp), reduces bean yields and quality throughout the world. Pinto `Chase' is a high-yielding variety with moderate resistance to Xcp derived from great northern Nebraska #1 selection 27, whose resistance is derived from an unknown tepary (P. acutifolius) bean source. XAN-159 is a black mottled small seeded breeding line with different genes for high resistance to Xcp derived from a different tepary source (PI 319443). Our objective was to pyramid different genes for Xcp resistance from the donor parent XAN-159 into the rust-resistant recurrent parent Pinto `Chase' using the classical back-cross breeding method with confirmation of resistance using RAPD molecular markers. Resistance was confirmed in some BC2F2 generation plants. Seven RAPD markers and the V locus (flower color) previously identified were confirmed in the BC1 and BC2 populations. Smaller seed size, purple flower color, and black mottled seed coat color were coinherited with resistance to Xcp. However, a recombinant plant with enhanced CBB resistance and moderate-sized pinto seed was identified. Backcross breeding is being continued.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 623d-623
Author(s):  
S.O. Park ◽  
A. Dursun ◽  
D.P. Coyne ◽  
G. Jung

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), an important disease in common bean (Phaseolus vulgaris L.) Tepary bean (P. acutifolius A. Gray) is of interest to bean breeders because of resistance to CBB. Our objective was to identify RAPD markers linked to major genes for CBB resistance using bulked segregant analysis in an F2 population from a tepary bean cross CIAT640005 (R) X Nebr#4B (S). A total of 57 RAPD primers (602 RAPD primers screened) showed polymorphisms between bulked DNA derived from R and S CBB plants. All markers showed coupling linkage with CBB resistance. A good fit to a 3:1 ratio of bands for presence and absence using 11 RAPD primers was observed in 77 F2 plants. Markers of U-15 and L-7 primers were 2.4 cM distant from the gene for resistance to Xcp strain LB-2. RAPD markers of U-10, U-20, S-12, Y-4, F-13, P-6, Q-1, and Q-ll primers were 2.4 cM distant from the gene for resistance to Xcp strain SC-4A. RAPD markers of IJ-15 and L-7 primers were 8.4 cM distant from the gene for resistance to Xcp strain EKl l. The tepary RAPD linkage group includes three molecular markers and three genes for resistance to Xcp strains EK-l l, LB-2, and SC-4A and spans a length of 19.2 cM. This data supports the presence of Xcp races.


2021 ◽  
Author(s):  
Heba Mahfouze ◽  
Sherin Mahfouze

Abstract The tomato crop is exposed to serious losses due to infection with several diseases and pests, which threaten tomato production in Egypt and worldwide. Therefore, selecting the tomato germplasm resistant or tolerant to a specific pathogen by molecular markers closely linked to resistance loci is a desirable goal of this study. In this work, seven co-dominant markers targeting six resistance genes (I-1, Ve, Ph3, Cf-9/Cf-4, Rx4, and Pto) for six main diseases [ fusarium wilt (Fusarium oxysporum f. sp. lycopersici), verticillium wilt (Verticillium dahliae and V. alboatrum), late blight (Phytophthora infestans), leaf mold (Cladosporium fulvum), bacterial spot (Xanthomonas campestris pv. vesicatoria) and bacterial speck (Pseudomonas syringae pv. tomato)], respectively were determined. Theses molecular markers differentiated among 19 tomato genotypes resistant (homozygote/heterozygote) and susceptible (homozygote) to the pathogens. Therefore, this study supplied us with novel tomato lines with resistance to multiple diseases, and their pyramiding inside domesticated tomato cultivars are suggested to apply in the tomato breeding programs of resistance against fungal and bacterial diseases.


Sign in / Sign up

Export Citation Format

Share Document