scholarly journals Heat Transfer on Magneto hydrodynamic Peristaltic Flow in a Porous Medium with Partial Slip

2017 ◽  
Vol 14 (2) ◽  
pp. 14-23
Author(s):  
Mohammed Salim ◽  
Ahmed M. Abd_alhadi
2017 ◽  
Vol 22 (2) ◽  
pp. 403-414 ◽  
Author(s):  
G.C. Sankad ◽  
P.S. Nagathan

AbstractAn attempt has been made to examine the effects of magnetohydrodynamic couple stress fluid in peristaltic flow with porous medium under the impact of slip, heat transfer and wall properties. The expressions are obtained for temperature, coefficient of heat transfer and velocity. Influences of different parameters, the Hartmann number, Brinkman number and adaptability parameters on the temperature and warmth trade coefficient are discussed through outlines.


2016 ◽  
Vol 10 (2) ◽  
pp. 673-687 ◽  
Author(s):  
Nabil T. M. El-dabe ◽  
Galal M. Moatimid ◽  
Mohamed A. Hassan ◽  
Doaa R. Mostapha

2018 ◽  
Vol 15 (4) ◽  
pp. 450-467
Author(s):  
K. Ramesh ◽  
M. Devakar

Purpose The main purpose of this paper is to study the effect of heat transfer on the peristaltic flow of a magnetohydrodynamic Walters B fluid through a porous medium in an inclined asymmetric channel. Design/methodology/approach The approximate analytical solutions of the governing partial differential equations are obtained using the regular perturbation method by taking wave number as a small parameter. The solutions for the pressure difference and friction forces are evaluated using numerical integration. Findings It is noticed that the pressure gradient and pressure difference are increasing functions of inclination angle and Grashof number. The temperature and heat transfer coefficients both increase with increase in inclination angle, Darcy number, Grashof number and Prandtl number. Increase in Hartmann number and phase difference decreases the size of trapped bolus. Originality/value The problem is original, as no work has been reported on the effect of magnetohydrodynamics on the peristaltic flow of a Walters B fluid through a porous medium in an inclined asymmetric channel with heat transfer.


2015 ◽  
Vol 39 (2) ◽  
pp. 357-366 ◽  
Author(s):  
Bikash Sahoo ◽  
Sébastien Poncet ◽  
Fotini Labropulu

Numerical solutions are obtained for the fully coupled and highly nonlinear system of differential equations, arising due to the steady Kármán flow and heat transfer of a viscous fluid in a porous medium. The conventional no-slip boundary conditions are replaced by partial slip boundary conditions owing to the roughness of the disk surface. Combined effects of the slip λ and porosity γ parameters on the momentum and thermal boundary layers are studied in detail. Both parameters produce the same effects on the mean velocity profiles, such that all velocity components are reduced by increasing either λ or γ. The temperature slip factor β has a dominating influence on the temperature profiles by decreasing the fluid temperature in the whole domain. The porosity parameter strongly decreases the heat transfer coefficient at the wall for low values of β and tends to an asymptotical limit around 0.1 for β ≃ 10. The porosity parameter γ increases the moment coefficient at the disk surface, which is found to monotonically decrease with λ.


Sign in / Sign up

Export Citation Format

Share Document