inclined asymmetric channel
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Alia Razia ◽  
Taseer Muhammad ◽  
...  

The implications of double-diffusive convection and an inclined magnetic field on the peristaltic transport of a pseudoplastic nanofluid in an inclined asymmetric channel with slip boundaries were investigated in this research. The present problem is mathematically modeled using lubrication techniques, which results in highly nonlinear equations for the proposed problem that is solved using a numerical technique. The graphical findings show how temperature, pressure rise, concentration, pressure gradient, nanoparticle fraction, and stream functions affect key physical parameters of interest. It is revealed that the velocity value rises as the velocity slip parameter, temperature, and solutal Grashof number rise. Furthermore, increasing thermal slip, Dufour, Soret, Brownian motion, and thermophoresis factors increase the temperature profile. If [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] the viscous model of classical Newtonian fluid is a special case of the preceding model.


Author(s):  
Kattamreddy Venugopal Reddy ◽  
Machireddy Gnaneswara Reddy ◽  
Oluwole Daniel Makinde

The presented article addresses the electro-osmotic peristaltic flow of a couple stress fluid bounded in an inclined asymmetric micro-channel. The viscous dissipation, Joule heating and chemical reaction effects are employed simultaneously in the flow analysis. Heat and mass transfer have been studied under large wavelength and small Reynolds number. The resulting nonlinear systems are solved numerically. The influence of various dominant physical parameters is discussed for velocity, temperature distribution, concentration distribution and the pumping characteristics. Electro kinetic flow of fluids by micro-pumping through micro channels and micro peristaltic transport has accelerated considerable concern in accelerated medical technology and several areas of biomedical engineering. Deeper clarification of the fluid dynamics of such flow requires the continuous need for more delicate mathematical models and numerical simulations, in parallel with laboratory investigations.


2018 ◽  
Vol 15 (4) ◽  
pp. 450-467
Author(s):  
K. Ramesh ◽  
M. Devakar

Purpose The main purpose of this paper is to study the effect of heat transfer on the peristaltic flow of a magnetohydrodynamic Walters B fluid through a porous medium in an inclined asymmetric channel. Design/methodology/approach The approximate analytical solutions of the governing partial differential equations are obtained using the regular perturbation method by taking wave number as a small parameter. The solutions for the pressure difference and friction forces are evaluated using numerical integration. Findings It is noticed that the pressure gradient and pressure difference are increasing functions of inclination angle and Grashof number. The temperature and heat transfer coefficients both increase with increase in inclination angle, Darcy number, Grashof number and Prandtl number. Increase in Hartmann number and phase difference decreases the size of trapped bolus. Originality/value The problem is original, as no work has been reported on the effect of magnetohydrodynamics on the peristaltic flow of a Walters B fluid through a porous medium in an inclined asymmetric channel with heat transfer.


Sign in / Sign up

Export Citation Format

Share Document