asymmetric channel
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 65)

H-INDEX

39
(FIVE YEARS 3)

Soft Matter ◽  
2022 ◽  
Author(s):  
Emma Mitchell ◽  
Elsen Tjhung

It has been known that the motion of self-propelled particles inside an asymmetric channel can be rectified to give rise to a macroscopic and unidirectional current. In this paper, we...


Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Alia Razia ◽  
Taseer Muhammad ◽  
...  

The implications of double-diffusive convection and an inclined magnetic field on the peristaltic transport of a pseudoplastic nanofluid in an inclined asymmetric channel with slip boundaries were investigated in this research. The present problem is mathematically modeled using lubrication techniques, which results in highly nonlinear equations for the proposed problem that is solved using a numerical technique. The graphical findings show how temperature, pressure rise, concentration, pressure gradient, nanoparticle fraction, and stream functions affect key physical parameters of interest. It is revealed that the velocity value rises as the velocity slip parameter, temperature, and solutal Grashof number rise. Furthermore, increasing thermal slip, Dufour, Soret, Brownian motion, and thermophoresis factors increase the temperature profile. If [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] the viscous model of classical Newtonian fluid is a special case of the preceding model.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Taseer Muhammad ◽  
Mir Yasir Umair

The significance of partial slip on double diffusive convection on magneto-Carreau nanofluid through inclined peristaltic asymmetric channel is examined in this paper. The two-dimensional and directional flow of a magneto-Carreau nanofluid is mathematically described in detail. Under the lubrication technique, the proposed model is simplified. The solutions of extremely nonlinear partial differential equations are calculated using a numerical technique. Graphical data are displayed using Mathematica software and Matlab to examine how temperature, pressure rise, concentration, pressure gradient, velocity profile, nanoparticle volume fraction, and stream functions behave on emerging parameters. It is noticed that as the velocity slip parameter is increased, the axial velocity at the channel’s center increases. Additionally, near the boundary, opposite behavior is observed. The temperature, concentration, and nanoparticle profile drops by increasing thermal slip, concentration slip, and nanoparticle slip parameter.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Narender Khatri ◽  
P. S. Burada

Author(s):  
Vijayaragavan R ◽  
Tamizharasi P ◽  
Magesh A

This article aims to investigate the numerical study of electroosmotic flow of the Eyring Powell fluid under the peristaltic mechanism with the influence of the porous medium in the micro-channel. The modified system is applied externally to an electrical field in the horizontal direction and to a magnetic field in the transverse direction. The flow of nanofluids is considered in the computation. The governing equations in the nano-fluid flow are modulated. Influence of lubrication theory approximation longequations are shortened. Reduced coupled nonlinear partial differential equations like velocity and energy equations are numerically solved using the powerful and well-known mathematical software MATHEMATICA by built in NDSolve command. The influence of various important parameters on the velocity and temperature profile is summarised by graphs.


Sign in / Sign up

Export Citation Format

Share Document