scholarly journals Voting Rules that are Unbiased but not Transitive-Symmetric

10.37236/8795 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Aadyot Bhatnagar

We explore the relation between two natural symmetry properties of voting rules. The first is transitive-symmetry – the property of invariance to a transitive permutation group – while the second is the "unbiased" property of every voter having the same influence for all i.i.d. probability measures. We show that these properties are distinct by two constructions – one probabilistic, one explicit – of rules that are unbiased but not transitive-symmetric.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.



2020 ◽  
Vol 23 (3) ◽  
pp. 393-397
Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractLet G be a finite transitive permutation group of degree n, with point stabilizer {H\neq 1} and permutation character π. For every positive integer t, we consider the generalized character {\psi_{t}=\rho_{G}-t(\pi-1_{G})}, where {\rho_{G}} is the regular character of G and {1_{G}} the 1-character. We give necessary and sufficient conditions on t (and G) which guarantee that {\psi_{t}} is a character of G. A necessary condition is that {t\leq\min\{n-1,\lvert H\rvert\}}, and it turns out that {\psi_{t}} is a character of G for {t=n-1} resp. {t=\lvert H\rvert} precisely when G is 2-transitive resp. a Frobenius group.



1967 ◽  
Vol 63 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Judita Cofman

D. R. Hughes stated the following conjecture: If π is a finite projective plane satisfying the condition: (C)π contains a collineation group δ inducing a doubly transitive permutation group δ* on the points of a line g, fixed under δ, then the corresponding affine plane πg is a translation plane.



2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.



Author(s):  
Marston Conder ◽  
Peter Lorimer ◽  
Cheryl Praeger

AbstractA number of constructions are given for arc-transitive digraphs, based on modifications of permutation representations of finite groups. In particular, it is shown that for every positive integer s and for any transitive permutation group p of degree k, there are infinitely many examples of a finite k-regular digraph with a group of automorphisms acting transitively on s-arcs (but not on (s + 1)-arcs), such that the stabilizer of a vertex induces the action of P on the out-neighbour set.



1967 ◽  
Vol 19 ◽  
pp. 583-589 ◽  
Author(s):  
K. I. Appel ◽  
E. T. Parker

This paper presents two results. They are:Theorem 1. Let G be a doubly transitive permutation group of degree nq + 1 where a is a prime and n < g. If G is neither alternating nor symmetric, then G has Sylow q-subgroup of order only q.Result 2. There is no unsolvable transitive permutation group of degree p = 29, 53, 149, 173, 269, 293, or 317 properly contained in the alternating group of degree p.Result 2 was demonstrated by a computation on the Illiac II computer at the University of Illinois.



2020 ◽  
Vol 32 (3) ◽  
pp. 713-721
Author(s):  
Andrea Lucchini ◽  
Mariapia Moscatiello ◽  
Pablo Spiga

AbstractWe show that there exists a constant a such that, for every subgroup H of a finite group G, the number of maximal subgroups of G containing H is bounded above by {a\lvert G:H\rvert^{3/2}}. In particular, a transitive permutation group of degree n has at most {an^{3/2}} maximal systems of imprimitivity. When G is soluble, generalizing a classic result of Tim Wall, we prove a much stronger bound, that is, the number of maximal subgroups of G containing H is at most {\lvert G:H\rvert-1}.



1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.





Sign in / Sign up

Export Citation Format

Share Document