scholarly journals An Infeasible Incremental Bundle Method for Nonsmooth Optimization Problem Based on CVaR Portfolio

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jia-Tong Li ◽  
Jie Shen ◽  
Na Xu

For CVaR (conditional value-at-risk) portfolio nonsmooth optimization problem, we propose an infeasible incremental bundle method on the basis of the improvement function and the main idea of incremental method for solving convex finite min-max problems. The presented algorithm only employs the information of the objective function and one component function of constraint functions to form the approximate model for improvement function. By introducing the aggregate technique, we keep the information of previous iterate points that may be deleted from bundle to overcome the difficulty of numerical computation and storage. Our algorithm does not enforce the feasibility of iterate points and the monotonicity of objective function, and the global convergence of the algorithm is established under mild conditions. Compared with the available results, our method loosens the requirements of computing the whole constraint function, which makes the algorithm easier to implement.

2011 ◽  
Vol 08 (03) ◽  
pp. 535-544 ◽  
Author(s):  
BOUDJEHEM DJALIL ◽  
BOUDJEHEM BADREDDINE ◽  
BOUKAACHE ABDENOUR

In this paper, we propose a very interesting idea in global optimization making it easer and a low-cost task. The main idea is to reduce the dimension of the optimization problem in hand to a mono-dimensional one using variables coding. At this level, the algorithm will look for the global optimum of a mono-dimensional cost function. The new algorithm has the ability to avoid local optima, reduces the number of evaluations, and improves the speed of the algorithm convergence. This method is suitable for functions that have many extremes. Our algorithm can determine a narrow space around the global optimum in very restricted time based on a stochastic tests and an adaptive partition of the search space. Illustrative examples are presented to show the efficiency of the proposed idea. It was found that the algorithm was able to locate the global optimum even though the objective function has a large number of optima.


Author(s):  
Kadir Mourat ◽  
Carola Eckstein ◽  
Thomas Koch

AbstractThis paper introduces a method for efficiently solving stochastic optimization problems in the field of engine calibration. The main objective is to make more conscious decisions during the base engine calibration process by considering the system uncertainty due to component tolerances and thus enabling more robust design, low emissions, and avoiding expensive recalibration steps that generate costs and possibly postpone the start of production. The main idea behind the approach is to optimize the design parameters of the engine control unit (ECU) that are subject to uncertainty by considering the resulting output uncertainty. The premise is that a model of the system under study exists, which can be evaluated cheaply, and the system tolerance is known. Furthermore, it is essential that the stochastic optimization problem can be formulated such that the objective function and the constraint functions can be expressed using proper metrics such as the value at risk (VaR). The main idea is to derive analytically closed formulations for the VaR, which are cheap to evaluate and thus reduce the computational effort of evaluating the objective and constraints. The VaR is therefore learned as a function of the input parameters of the initial model using a supervised learning algorithm. For this work, we employ Gaussian process regression models. To illustrate the benefits of the approach, it is applied to a representative engine calibration problem. The results show a significant improvement in emissions compared to the deterministic setting, where the optimization problem is constructed using safety coefficients. We also show that the computation time is comparable to the deterministic setting and is orders of magnitude less than solving the problem using the Monte-Carlo or quasi-Monte-Carlo method.


2020 ◽  
Author(s):  
Bernard Dusseault ◽  
Philippe Pasquier

<p>The design by optimization of hybrid ground-coupled heat pump (Hy-GCHP) systems is a complex process that involves dozens of parameters, some of which cannot be known with absolute certainty. Therefore, designers face the possibility of under or oversizing Hy-GCHP systems as a result of those uncertainties. Of course, both situations are undesirable, either raising upfront costs or operating costs. The most common way designers try to evaluate their impacts and prepare the designs against unforeseen conditions is to use sensitivity analyses, an operation that can only be done after the sizing.</p><p>Traditional stochastic methods, like Markov chain Monte Carlo, can handle uncertainties during the sizing, but come at a high computational price paid for in millions of simulations. Considering that individual simulation of Hy-GCHP system operation during 10 or 20 years can range between seconds and minutes, millions of simulations are therefore not a realistic approach for design under uncertainty. Alternative stochastic design methodologies are exploited in other fields with great success that do not require nearly as many simulations. This is the case for the conditional-value-at-risk (CVaR) in the financial sector and for the net present value-at-risk (NPVaR) in civil engineering. Both financial indicators are used as objective functions in their respective fields to consider uncertainties. To do that, they involve distributions of uncertain parameters but only focus on the tail of distributions. This results in quicker optimizations but also in more conservative designs. This way, they remain profitable even when faced with extremely unfavorable conditions.</p><p>In this work, we adapt the NPVaR to make the sizing of Hy-GCHP systems under uncertainties viable. The mixed-integer non-linear optimization algorithm used jointly with the NPVaR, the Hy-GCHP simulation algorithm and the g-function assessment methods used are presented broadly, all of which are validated in this work or in referenced publications. The way in which the NPVaR is implemented is discussed, more specifically how computation time can be further reduced using a clever implementation without sacrificing its conservative property. The implications of using the NPVaR over a deterministic algorithm are investigated during a case study that revolves around the design of an Hy-GCHP system in the heating-dominated environment of Montreal (Canada). Our results show that over 1000 experiments, a design sized using the NPVaR has an average return on investment of 126,829 $ with a standard deviation of 18,499 $ while a design sized with a deterministic objective function yields 137,548 $ on average with a standard deviation of 33,150 $. Furthermore, the worst returns in both cases are respectively 35,229 $ and -32,151 $. This shows that, although slightly less profitable on average, the NPVaR is a better objective function when the concern is about avoiding losses rather than making a huge profit.</p><p>In that regard, since HVAC is usually considered a commodity rather than an investment, we believe that a more financially stable and predictable objective function is a welcome addition in the toolbox of engineers and professionals alike that deal with the design of expensive systems such as Hy-GCHP.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jie Shen ◽  
Li-Ping Pang ◽  
Dan Li

An implementable algorithm for solving a nonsmooth convex optimization problem is proposed by combining Moreau-Yosida regularization and bundle and quasi-Newton ideas. In contrast with quasi-Newton bundle methods of Mifflin et al. (1998), we only assume that the values of the objective function and its subgradients are evaluated approximately, which makes the method easier to implement. Under some reasonable assumptions, the proposed method is shown to have a Q-superlinear rate of convergence.


2016 ◽  
Vol 33 (1-2) ◽  
Author(s):  
Edgars Jakobsons

AbstractThe statistical functional expectile has recently attracted the attention of researchers in the area of risk management, because it is the only risk measure that is both coherent and elicitable. In this article, we consider the portfolio optimization problem with an expectile objective. Portfolio optimization problems corresponding to other risk measures are often solved by formulating a linear program (LP) that is based on a sample of asset returns. We derive three different LP formulations for the portfolio expectile optimization problem, which can be considered as counterparts to the LP formulations for the Conditional Value-at-Risk (CVaR) objective in the works of Rockafellar and Uryasev [


Sign in / Sign up

Export Citation Format

Share Document