composite models of particles
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

1994 ◽  
Vol 49 (6) ◽  
pp. 649-662
Author(s):  
G. Grimm

Abstract Effective composite particle dynamics can be derived by weak mapping of quantum fields. This method was already applied to derive effective boson or boson-fermion coupling theories from a nonlinear subfermion field. In this paper we present an extension of those calculations to the general group theoretical treatm ent of two-fermion bound states and their coupling to (elementary) fermions within an arbitrary nonlinear spinor-isospinor field model. The resulting effective field equations are com pared with the corresponding phenomenological expressions which for example underly the standard electroweak theory. PACS 11 .10 - Field theory.PACS 12.10 - Unified field theories and models. PACS 12.35 - Composite models of particles.


1987 ◽  
Vol 42 (3) ◽  
pp. 213-226 ◽  
Author(s):  
H. Stumpf

The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.


1986 ◽  
Vol 41 (5) ◽  
pp. 683-703
Author(s):  
H. Stumpf

Unified nonlinear spinorfield models are self-regularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined and below the threshold of preon production the effective dynamics of the model is only concerned with bound state reactions. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived and the effective dynamics for preonantipreon scalar boson states and three-preon fermion (and anti-fermion) states was studied in the low energy as well as in the high energy limit, leading to a functional energy representation of an effective Yukawa theory (with high energy form-factors). In this paper the effective dynamics of two-preon composite vector bosons is studied. The weak mapping of the functional energy representation of the spinorfield on to the functional energy representation for the effective vector boson dynamics (with interactions) produces a non-abelian SU (2) local gauge theory (Yang-Mills theory) for a triplet of mass-zero vector bosons in the temporal and Coulomb gauge. This special gauge is enforced by the use of the energy representation and is compatible with the nonlinear Yang-Mills dynamics (and quantization). Apart from the non-abelian Gauss-law all other field laws and constraints directly follow from the mapping procedure. The non-abelian Gauss-law is a consequence of the relativistic invariance of the effective dynamics. PACS 11.10 Field theory PACS 12.10 Unified field theories and models PACS 12.35 Composite models of particles


Sign in / Sign up

Export Citation Format

Share Document