chlorurus microrhinos
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12134
Author(s):  
Atsushi Nanami

Parrotfishes (Labridae: Scarini) and groupers (Epinephelidae) are important fish groups that are regarded as the fisheries targets of primary importance in coral reefs. In order to establish ecosystem-based management of these two fish groups, clarifying the spatial distribution relative to habitat characteristics is of central importance. The present study investigated the spatial distributions of 12 parrotfishes species and seven groupers species in relation to environmental characteristics in an Okinawan coral reef. Ten out of the 12 parrotfish species and all seven grouper species showed species-specific spatial distributions. Four substrate types in the inner reefs (branching Acropora, bottlebrush Acropora, dead branching Acropora, and dead bottlebrush Acropora), three substrate types in the exposed reefs (massive coral, other coral, and calcium carbonate substratum), and water depth showed significant associations with the spatial distribution of fishes. Among the 12 parrotfish species, two species (Scarus spinus and S. forsteni) and four species (S. psittacus, S. hypselopterus, S. dimidiatus and S. ghobban) were primarily found in exposed reefs and inner reefs, respectively. Among the seven grouper species, two species (Cephalopholis argus and C. urodeta) and two other species (C. miniata and Epinephelus ongus) were primarily found in exposed reefs and inner reefs, respectively. Size-related spatial distribution was also found for three parrotfish species (Chlorurus microrhinos, Scarus rivulatus and S. hypselopterus), indicating that smaller-sized and larger-sized individuals were respectively found at sites with greater coverage of substrates with fine structure (live bottlebrush Acropora and dead bottlebrush Acropora) and coarse structure (live branching Acropora, dead branching Acropora and calcium carbonate substratum). The present study suggested that the spatial distribution of parrotfishes and groupers is not necessarily associated with the higher coverage of living corals, but positively associated with high substrate complexity. Thus, actual spatial distributional patterns of species should be considered to select candidate sites for protection and conservation for the two fish groups.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 564
Author(s):  
Isabel do Prado Leite ◽  
Khalil Sdiri ◽  
Angus Taylor ◽  
Jérôme Viallon ◽  
Hela Ben Gharbia ◽  
...  

Ciguatera poisoning is a food intoxication associated with the consumption of fish or shellfish contaminated, through trophic transfer, with ciguatoxins (CTXs). In this study, we developed an experimental model to assess the trophic transfer of CTXs from herbivorous parrotfish, Chlorurus microrhinos, to carnivorous lionfish, Pterois volitans. During a 6-week period, juvenile lionfish were fed naturally contaminated parrotfish fillets at a daily dose of 0.11 or 0.035 ng CTX3C equiv. g−1, as measured by the radioligand-receptor binding assay (r-RBA) or neuroblastoma cell-based assay (CBA-N2a), respectively. During an additional 6-week depuration period, the remaining fish were fed a CTX-free diet. Using r-RBA, no CTXs were detectable in muscular tissues, whereas CTXs were measured in the livers of two out of nine fish sampled during exposure, and in four out of eight fish sampled during depuration. Timepoint pooled liver samples, as analyzed by CBA-N2a, confirmed the accumulation of CTXs in liver tissues, reaching 0.89 ng CTX3C equiv. g−1 after 41 days of exposure, followed by slow toxin elimination, with 0.37 ng CTX3C equiv. g−1 measured after the 6-week depuration. These preliminary results, which need to be pursued in adult lionfish, strengthen our knowledge on CTX transfer and kinetics along the food web.


Zootaxa ◽  
2006 ◽  
Vol 1265 (1) ◽  
pp. 1 ◽  
Author(s):  
MATTHEW J. NOLAN ◽  
THOMAS H. CRIBB

A survey of Pacific coral reef fishes for sanguinicolids revealed that two species of Lutjanidae (Lutjanus argentimaculatus, L. bohar), six species of Siganidae (Siganus corallinus, S. fuscescens, S. lineatus, S. margaritiferus, S. punctatus, S. vulpinus), seven species of Chaetodontidae (Chaetodon aureofasciatus, C. citrinellus, C. flavirostris, C. lineolatus, C. reticulatus, C. ulietensis, C. unimaculatus), three species of Scombridae (Euthynnus affinis, Scomberomorus commerson, S. munroi) and three species of Scaridae (Chlorurus microrhinos, Scarus frenatus, S. ghobban) were infected with morphologically similar sanguinicolids. These flukes have a flat elliptical body, a vestigial oral sucker, a single testis, separate genital pores and a post-ovarian uterus. However, these species clearly belong in two genera based on the position of the testis and genital pores. Sanguinicolids from Lutjanidae, Siganidae, Chaetodontidae and Scombridae belong in Cardicola Short, 1953; the testis originates anteriorly to, or at the anterior end of, the intercaecal field and does not extend posteriorly to it, the male genital pore opens laterally to the sinistral lateral nerve chord and the female pore opens near the level of the oötype (may be anterior, lateral or posterior to it) antero-dextral to the male pore. Those from Scaridae are placed in a new genus, Braya; the testis originates near the posterior end of the intercaecal field and extends posteriorly to it, the male pore opens medially at the posterior end of the body and the female pore opens posterior to the oötype, antero-sinistral to the male pore. The second internal transcribed spacer (ITS2) of ribosomal DNA from these sanguinicolids and a known species, Cardicola forsteri Cribb, Daintith & Munday, 2000, were sequenced, aligned and analysed to test the distinctness of the putative new species. Results from morphological comparisons and molecular analyses suggest the presence of 18 putative species; 11 are described on the basis of combined morphological and molecular data and seven are not because they are characterised solely by molecular sequences or to few morphological specimens (n=one). There was usually a correlation between levels of morphological and genetic distinction in that pairs of species with the greatest genetic separation were also the least morphologically similar. The exception in this regard was the combination of Cardicola tantabiddii n. sp. from S. fuscescens from Ningaloo Reef (Western Australia) and Cardicola sp. 2 from the same host from Heron Island (Great Barrier Reef). These two parasite/host/location combinations had identical ITS2 sequences but appeared to differ morphologically (however, this could simply be due to a lack of morphological material for Cardicola sp. 2). Only one putative species (Cardicola sp. 1) was found in more than one location; most host species harboured distinct species in each geographical location surveyed (for example, S. corallinus from Heron and Lizard Islands) and some (for example, S. punctatus, S. fuscescens and Chlorurus microrhinos) harboured two species at a single location. Distance analysis of ITS2 showed that nine species from siganids, three from scombrids and five from scarids formed monophyletic clades to the exclusion of sanguinicolids from the other host families. Cardicola milleri n. sp. and C. chaetodontis Yamaguti, 1970 from lutjanids and chaetodontids, respectively, were the only representatives from those families that were sequenced. Within the clade formed by sanguinicolids from Siganidae there was a further division of species; species from the morphologically similar S. fuscescens and S. margaritiferus formed a monophyletic group to the exclusion of sanguinicolids from all other siganid species.


Sign in / Sign up

Export Citation Format

Share Document