commercial catch
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 25)

H-INDEX

30
(FIVE YEARS 2)

Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Ricardo Urías-Sotomayor ◽  
Guillermo Rodríguez-Domínguez ◽  
José Adán Félix-Ortiz ◽  
Gilberto G. Ortega-Lizárraga ◽  
Horacio A. Muñoz-Rubí ◽  
...  

A stock reduction analysis (SRA) of bigeye croaker Micropogonias megalops was performed based on commercial catch data. SRA solutions were restricted to a 2011 bigeye croaker stock biomass estimate of 14,412 t. The viable solution indicated a reduction in stock of 73.6% from 1983 to 2020 with an initial biomass of 22,186 t. In addition, a possible effect of hyperstability of the stock was evaluated by applying different versions of the Cobb–Douglas catch function. The most probable function based on a multi-model selection procedure was the one wherein the catch does not depend on biomass and is directly proportional to the applied fishing effort of small boats (~7 m) and vessels (~24 m). This situation suggests that in a free access regime, fishing can deplete the resource until it collapses, without observing a significant reduction in its catches until the event is very close.


Author(s):  
S. Santhoshkumar ◽  
P. Jawahar ◽  
A. Srinivasan ◽  
N. Jayakumar ◽  
A. Subburaj

Background: The present study was undertaken to analyse the monthly and seasonal finfish bycatch diversity of trawler fishery of Nagapattinam coast situated in the state of Tamil Nadu, South India from January 2017 to August 2019. Methods: Samples of finfish bycatch were collected fortnightly from the commercial shrimp trawlers operating in the coastal waters off Nagapattinam. The collected bycatch of finfish species was identified and month-wise and season-wise trawl finfish bycatch occurrence data collected were subjected to univariate and multivariate analysis using PRIMER Version 6.1.7. software. Result: In this study, the annual average total landing was estimated at 15,414.41 tonnes with an annual average fishing effort of 9327 boat days. Of this total landing, commercial catch constituted 70.75% (10,905.78 tonnes), whereas finfish bycatch formed 21.12% (3,256.14 tonnes) and rest by other groups. The peak fishing effort was observed in every March during the study period. A total of 210 finfish species belonging to 15 orders, 79 families and 153 genera were recorded, in which the order, Perciformes alone shared 53.81% of the total number of species. The monthly univariate analysis revealed that bycatch diversity was the highest in every September and the lowest in every June during the study period, while the season-wise analysis revealed the highest diversity during monsoon seasons. Likewise, the month-wise multivariate analysis performed through cluster analysis divulged the highest similarity between September’17 and September’18, while the season-wise analysis revealed the highest similarity between postmonsoon’17 and postmonsoon’18. Further, the K dominance plot divulged that the highest density of finfish species was in every September and in monsoon seasons during the study period.


2021 ◽  
Author(s):  
◽  
Alexander Halliwell

<p>Nemadactylus macropterus, commonly known as tarakihi in New Zealand is highly regarded by commercial and recreational fishers and considered a taonga by iwi and customary fisheries. For many years N. macropterus was New Zealand’s second most important commercial catch and is currently the third most valuable inshore commercial finfish fishery in which 90% is consumed by the domestic market. However, despite the apparent importance, relatively little is known about the population structure of the N. macropterus. In 2017 the first fully quantitative stock assessment was conducted on the east coast N. macropterus fisheries as one stock. Alarmingly, the east coast fishery was estimated to be 15.9% of the unexploited spawning biomass and predicted to have been declining for the past thirty years. In an effort to rebuild the fishery, several rebuild plans have been purposed and commercial catch limits have been reduced. In order to rebuild and successfully manage a viable future N. macropterus fishery, an understanding of demographic connectivity and genetic connectivity among N. macropterus populations is essential.  The overall goal of this thesis research was to investigate the population genetic structure, genetic diversity and demographic history of N. macropterus using fish sampled from around New Zealand. This was achieved by analysing hyper variable region one of mitochondrial DNA for 370 N. macropterus collected from 14 locations. No genetic differentiation was observed among the 14 locations, an indication that N. macropterus have a panmictic genetic structure. Furthermore, N. macropterus display a relatively high level of genetic diversity and appear to have a large stable population with a long evolutionary history. The Bayesian skyline analysis indicates the N. macropterus historic population has gone through two expansions. The mostly likely cause of this is an expansion before and after the last glacial maximum.  The genetic diversity and demographic history of N. sp was also studied using samples collected from around the Three Kings Islands of New Zealand. The complete mitochondrial genome of N. macropterus was reconstructed from bulk DNA sequencing data and a set of specific mtDNA primers were developed to amplify hyper variable region one. The DNA sequencing data provided by these primers with the addition of published control region sequences was used to reconstruct the Nemadactylus phylogeny.</p>


2021 ◽  
Author(s):  
◽  
Alexander Halliwell

<p>Nemadactylus macropterus, commonly known as tarakihi in New Zealand is highly regarded by commercial and recreational fishers and considered a taonga by iwi and customary fisheries. For many years N. macropterus was New Zealand’s second most important commercial catch and is currently the third most valuable inshore commercial finfish fishery in which 90% is consumed by the domestic market. However, despite the apparent importance, relatively little is known about the population structure of the N. macropterus. In 2017 the first fully quantitative stock assessment was conducted on the east coast N. macropterus fisheries as one stock. Alarmingly, the east coast fishery was estimated to be 15.9% of the unexploited spawning biomass and predicted to have been declining for the past thirty years. In an effort to rebuild the fishery, several rebuild plans have been purposed and commercial catch limits have been reduced. In order to rebuild and successfully manage a viable future N. macropterus fishery, an understanding of demographic connectivity and genetic connectivity among N. macropterus populations is essential.  The overall goal of this thesis research was to investigate the population genetic structure, genetic diversity and demographic history of N. macropterus using fish sampled from around New Zealand. This was achieved by analysing hyper variable region one of mitochondrial DNA for 370 N. macropterus collected from 14 locations. No genetic differentiation was observed among the 14 locations, an indication that N. macropterus have a panmictic genetic structure. Furthermore, N. macropterus display a relatively high level of genetic diversity and appear to have a large stable population with a long evolutionary history. The Bayesian skyline analysis indicates the N. macropterus historic population has gone through two expansions. The mostly likely cause of this is an expansion before and after the last glacial maximum.  The genetic diversity and demographic history of N. sp was also studied using samples collected from around the Three Kings Islands of New Zealand. The complete mitochondrial genome of N. macropterus was reconstructed from bulk DNA sequencing data and a set of specific mtDNA primers were developed to amplify hyper variable region one. The DNA sequencing data provided by these primers with the addition of published control region sequences was used to reconstruct the Nemadactylus phylogeny.</p>


2021 ◽  
Author(s):  
Ole Henriksen ◽  
Anna Rindorf ◽  
Henrik Mosegaard ◽  
Mark R. Payne ◽  
Mikael van Deurs

2021 ◽  
pp. 5-22
Author(s):  
V. Lytvynenko ◽  
◽  
D. Khrystenko ◽  
G. Kotovska ◽  
N. Kolesnik ◽  
...  

Purpose.To analyze the array of special literature and summarize the information obtained on the features of the white bream (Blicca bjoerkna (Linnaeus, 1758)) and its commercial catch from the Kуiv reservoir. Consider the basic principles of its forecasting, based on the current ecological state of this reservoir, which is of strategic importance for Ukraine. Findings. An overview of modern scientific publications devoted to the peculiarities of the commercial catch of white bream from the Kуiv reservoir, its forecasting and the prospects for using this species in fisheries is presented. The literature data on the specifics of industrial fishing in the Kуiv reservoir are summarized based on the ecological characteristics of this reservoir. The main factors influencing the adaptation of white bream populations to their commercial exploitation are described. The general directions of the impact of anthropogenic pressure on them and their consequences are considered. The prospects of using white bream as an economically valuable species are shown under the condition of rational industrial fishing in the Kуiv reservoir. Practical Value. The review can be useful for scientists, applicants, students, government authorities and private entrepreneurs involved in the process of research and commercial harvesting of living aquatic resources in reservoirs, namely in Kуiv reservoir. Keywords: white bream (Blicca bjoerkna Linnaeus, 1758), Kуiv reservoir, industrial fishing, ichthyofauna.


2021 ◽  
Vol 13 (5) ◽  
pp. 545-558
Author(s):  
Daniel M. Weaver ◽  
Douglas B. Sigourney ◽  
Mari‐Beth Delucia ◽  
Joseph D. Zydlewski

2021 ◽  
Vol 8 ◽  
Author(s):  
Sahar F. Mehanna ◽  
Alam Eldeen Farouk

Length-weight relationships (LWRs) are described for 60 important pelagic and demersal fish species caught during fishing surveys using trawl fishing gear in the Eastern Mediterranean, Egypt (General Fisheries Commission for the Mediterranean GFCM-GSA 26), and the data collected from the commercial catch during the period from July 2017 to December 2018. Linear regression using natural logarithmic transformation data was performed to calculate the a and b coefficients of LWR for 60 fish populations covering 23 families, 43 genera, and 60 species inhabiting GSA 26. The samples size, minimum and maximum lengths and weights with their mean and SD, LWR constants, ± 95% confidence interval (CI) of b, r2, and the type of growth were calculated and summarized. This study reports the first LWR estimates for 35 species in the Egyptian waters of the Mediterranean Sea.


2021 ◽  
Vol 13 (13) ◽  
pp. 2434
Author(s):  
W. Charles Kerfoot ◽  
Martin M. Hobmeier ◽  
Gary Swain ◽  
Robert Regis ◽  
Varsha K. Raman ◽  
...  

On the Keweenaw Peninsula of Lake Superior, two stamp mills (Mohawk and Wolverine) discharged 22.7 million metric tonnes (MMT) of tailings (1901–1932) into the coastal zone off the town of Gay. Migrating along the shoreline, ca. 10 MMT of the tailings dammed stream and river outlets, encroached upon wetlands, and contaminated recreational beaches. A nearly equal amount of tailings moved across bay benthic environments into critical commercial fish spawning and rearing grounds. In the middle of the bay, Buffalo Reef is important for commercial and recreational lake trout and lake whitefish production (ca. 32% of the commercial catch in Keweenaw Bay, 22% along southern Lake Superior). Aerial photographs (1938–2016) and five LiDAR and multispectral over-flights (2008–2016) emphasize: (1) the enormous amounts of tailings moving along the beach; and (2) the bathymetric complexities of an equal amount migrating underwater across the shelf. However, remote sensing studies encounter numerous specific challenges in coastal environments. Here, we utilize a combination of elevation data (LiDAR digital elevation/bathymetry models) and in situ studies to generate a series of physical, chemical, and biological geospatial maps. The maps are designed to help assess the impacts of historical mining on Buffalo Reef. Underwater, sand mixtures have complicated multispectral bottom reflectance substrate classifications. An alternative approach, in situ simple particle classification, keying off distinct sand end members: (1) allows calculation of tailings (stamp sand) percentages; (2) aids indirect and direct assays of copper concentrations; and (3) permits determinations of density effects on benthic macro-invertebrates. The geospatial mapping shows how tailings are moving onto Buffalo Reef, the copper concentrations associated with the tailings, and how both strongly influence the density of benthic communities, providing an excellent example for the International Maritime Organization on how mining may influence coastal reefs. We demonstrate that when large amounts of mine tailings are discharged into coastal environments, temporal and spatial impacts are progressive, and strongly influence resident organisms. Next steps are to utilize a combination of hi-resolution LiDAR and sonar surveys, a fish-monitoring array, and neural network analysis to characterize the geometry of cobble fields where fish are successful or unsuccessful at producing young.


Sign in / Sign up

Export Citation Format

Share Document