scholarly journals Existence of multiple positive solutions for singular p‐q ‐Laplacian problems with critical nonlinearities

Author(s):  
Jiayu Wang ◽  
Wei Han
Author(s):  
Wang Jiayu ◽  
Wei Han

In this article, we consider the following p-q-Laplacian system with singular and critical nonlinearity \begin{equation*} \left \{ \begin{array}{lllll} -\Delta_{p}u-\Delta_{q}u=\frac{h_{1}(x)}{u^{r}}+\lambda\frac{\alpha}{\alpha+\beta}u^{\alpha-1}v^{\beta} \ \ in\ \Omega ,\\ -\Delta_{p}v-\Delta_{q}v=\frac{h_{2}(x)}{v^{r}}+\lambda\frac{\beta}{\alpha+\beta}u^{\alpha}v^{\beta-1} \ \ in\ \Omega, \\ u,v>0 \ \ \ \ \ \ in \ \Omega, \ \ \ \ \ u=v=0 \ \ \ \ \ \ \ on \ \partial\Omega, \end{array} \right. \end{equation*} where Ω is a bounded domain in $\mathbb {R}^{n}$ with smooth boundary $\partial\Omega$. $11,\lambda\in(0,\Lambda_{*})$ is parameter with $\Lambda _{*}$ is a positive constant and $h_{1}(x),h_{2}(x)\in L^{\infty},h_{1}(x),h_{2}(x)>0$. We show the existence and multiplicity of weak solution of equation above for suitable range of $\lambda$.


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


Sign in / Sign up

Export Citation Format

Share Document