medial septal area
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 1)

H-INDEX

20
(FIVE YEARS 1)

2019 ◽  
Vol 694 ◽  
pp. 51-56 ◽  
Author(s):  
Jéssica Matheus Sá ◽  
Milena Cassolatti Barros ◽  
Mariana Rosso Melo ◽  
Eduardo Colombari ◽  
José Vanderlei Menani ◽  
...  

2014 ◽  
Vol 85 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Claudia Pinelli ◽  
Arun G. Jadhao ◽  
Saikat P. Biswas ◽  
Kazuyoshi Tsutsui ◽  
Biagio D''Aniello

Growing evidence suggests that gonadotropin-inhibitory hormone (GnIH) may play a key role in mediating vertebrate reproduction. GnIH inhibits gonadotropin synthesis and release by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons as well as by directly regulating gonadotropin secretion from the pituitary. Whereas the presence of GnIH has been widely investigated in various classes of vertebrates, there are very few immunohistochemical reports focusing on GnIH in amphibians. The aim of this study was to assess the presence and neuroanatomical distribution of GnIH-like immunoreactivity in the brain of the anuran amphibian Pelophylax (Rana) esculentus (esculenta) and to explore any potential anatomical relationship with mammalian GnRH-immunoreactive (mGnRH-ir) elements. The GnIH-like immunoreactive (GnIH-ir) system constitutes two distinct subpopulations in the telencephalon and diencephalon, with the highest number of immunoreactive cells located in the preoptic and suprachiasmatic areas. GnIH-ir neurons were also observed in the medial septum, the anterior commissure, the dorsal hypothalamus, the periventricular nucleus of the hypothalamus, and the posterior tuberculum. Scattered GnIH-ir fibers were present in all major subdivisions of the brain but only occasionally in the median eminence. mGnRH-ir neurons were distributed in the mediobasal telencephalon, the medial septal area, and the anterior preoptic area. Double-label immunohistochemistry revealed that the GnRH and GnIH systems coexist and have overlapping distributions at the level of the anterior preoptic area. Some GnIH-ir fibers were in close proximity to mGnRH-ir cell bodies. Our results suggest that both the neuroanatomy and the functional regulation of GnRH release are conserved properties of the hypothalamic GnIH-ir system among vertebrate species.


2014 ◽  
Vol 120 (2) ◽  
pp. 392-402 ◽  
Author(s):  
Siew Kian Tai ◽  
Jingyi Ma ◽  
L. Stan Leung

Abstract Background: Cholinergic drugs are known to modulate the response of general anesthesia. However, the sensitivity of isoflurane or other volatile anesthetics after selective lesion of septal cholinergic neurons that project to the hippocampus is not known. Methods: Male Long Evans rats had 192 immunoglobulin G-saporin infused into the medial septum (n = 10), in order to selectively lesion cholinergic neurons, whereas control, sham-lesioned rats were infused with saline (n = 12). Two weeks after septal infusion, the hypnotic properties of isoflurane and ketamine were measured using a behavioral endpoint of loss of righting reflex (LORR). Septal lesion was assessed by counting choline acetyltransferase–immunoreactive cells and parvalbumin-immunoreactive cells. Results: Rats with 192 immunoglobulin G-saporin lesion, as compared with control rats with sham lesion, showed a 85% decrease in choline acetyltransferase–immunoreactive, but not parvalbumin–immunoreactive, neurons in the medial septal area. Lesioned as compared with control rats showed increased isoflurane sensitivity, characterized by a leftward shift of the graph plotting cumulative LORR percent with isoflurane dose. However, lesioned and control rats were not different in their LORR sensitivity to ketamine. When administered with 1.375% isoflurane, LORR induction time was shorter, whereas emergence time was longer, in lesioned as compared with control rats. Hippocampal 62–100 Hz gamma power in the electroencephalogram decreased with isoflurane dose, with a decrease that was greater in lesioned (n = 5) than control rats (n = 5). Conclusions: These findings suggest a role of the septal cholinergic neurons in modulating the sensitivity to isoflurane anesthesia, which affects both induction and emergence. The sensitivity of hippocampal gamma power to isoflurane appears to indicate anesthesia (LORR) sensitivity.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Mariana Del Rosso Melo ◽  
Jose Vanderlei Menani ◽  
Eduardo Colombari ◽  
Debora Simoes Almeida Colombari

Sign in / Sign up

Export Citation Format

Share Document